在IT行业中,断点续传是一项非常实用的技术,特别是在大文件传输时,它允许用户中断传输后在同一个位置继续,避免了重新下载或上传整个文件的麻烦。
在本项目"**C#断点续传(windows服务版)**"中,我们将探讨如何使用C#语言和Socket编程来实现这一功能,特别是在Windows服务环境下。
我们要理解**C#**是一种面向对象的编程语言,广泛用于开发Windows桌面应用、Web应用和服务。
在C#中,我们可以利用.NETFramework提供的丰富的类库来实现各种功能,包括网络通信。
**Socket**是网络通信的基础,它提供了进程间的通信能力,允许数据在网络中发送和接收。
在C#中,`System.Net.Sockets`命名空间提供了Socket类,我们可以利用它创建TCP连接,实现断点续传。
断点续传的关键在于记录当前传输的状态,包括已传输的字节数、文件的总大小等信息。
在服务器端,我们需要保存这些状态,以便客户端在下次连接时能够获取。
在Windows服务中运行,这个程序可以持续监听特定端口,等待客户端的连接请求。
实现步骤如下:1.**创建服务端Socket**:在Windows服务中启动时,初始化一个Socket并绑定到特定IP地址和端口,然后开始监听。
2.**处理客户端连接**:当客户端请求连接时,服务端接受连接,并创建一个新的Socket与客户端进行通信。
3.**文件信息交换**:服务端与客户端先交换文件的元信息,如文件大小、已传输的字节数等,确定断点续传的起点。
4.**数据传输**:客户端根据已知的起始位置,向服务端请求剩余的数据。
服务端读取文件的剩余部分,通过Socket发送到客户端。
5.**错误处理和断点标记**:在整个传输过程中,需检测异常并记录当前位置,以便发生中断时恢复。
客户端和服务器端都需要有保存和恢复断点位置的能力。
6.**关闭连接**:传输完成后,双方关闭Socket连接。
在提供的代码示例中,`socket_backpointpost(service)`可能是服务端的实现文件,包含上述步骤的逻辑。
在阅读和学习代码时,注意以下关键点:-如何创建和配置Socket对象。
-如何使用`BeginAccept`或`AcceptAsync`异步方法来监听客户端连接。
-如何通过`FileStream`读写文件,并配合`Socket.Send`和`Socket.Receive`方法进行数据传输。
-如何处理错误,保存和恢复断点信息。
深入理解这些概念并实践编写代码,可以帮助你掌握C#和Socket实现断点续传的关键技术和技巧。
通过这种方式,你可以构建稳定且高效的文件传输系统,尤其适用于大文件和网络环境不稳定的场景。
2025/9/25 8:29:53 46KB 断点续传 socket
1
基于Winsock的TCP聊天程序的实现,包含有服务器端和客户端
2025/9/23 1:38:49 3.53MB TCP 聊天
1
即时通讯(InstantMessaging,简称IM)软件是一种允许用户实时交流的通信工具,广泛应用于个人聊天、团队协作和在线会议等多种场景。
本项目是基于C++语言实现的即时通讯软件,适用于学习和完成大型作业,提供了客户端和服务器端的完整代码,并配以TXT说明文档,帮助用户理解并操作软件。
C++作为一门强大的面向对象编程语言,因其高效、灵活和丰富的库支持,常被用于开发系统级和性能要求高的应用,包括网络编程领域。
在C++中实现即时通讯软件,需要掌握以下几个核心知识点:1.**网络编程基础**:C++中的网络编程主要依赖于套接字(Socket)API,这是操作系统提供的接口,用于在网络间进行数据传输。
了解TCP/IP协议族,包括TCP和UDP协议,理解它们的区别和应用场景至关重要。
2.**套接字编程**:创建套接字、绑定IP地址和端口、监听连接请求、接受连接、发送和接收数据等是C++网络编程的基本操作。
对于即时通讯,通常使用TCP协议来保证数据的可靠传输。
3.**多线程编程**:为了实现并发处理多个客户端连接,服务器端需要使用多线程或异步IO。
C++11引入了标准库``,提供了线程管理的便利工具,如`std::thread`用于创建新线程,`std::mutex`用于同步线程访问共享资源。
4.**数据序列化与解析**:即时通讯软件中,消息需要在网络中传输,因此需要将数据结构序列化为二进制或文本格式,如JSON、XML或自定义协议。
C++可以借助库如protobuf或RapidJSON进行序列化和反序列化。
5.**用户界面设计**:客户端通常需要一个友好的用户界面,可以使用C++GUI库如Qt、wxWidgets或GTK+。
这些库提供了丰富的组件和事件处理机制,便于构建交互式界面。
6.**安全性**:即时通讯软件涉及到用户隐私和数据安全,需要考虑加密技术,如SSL/TLS,确保通信过程中的数据不被窃取或篡改。
7.**错误处理和异常安全**:良好的错误处理和异常处理机制可以提高程序的健壮性。
C++中的异常处理机制可以帮助捕获运行时错误,并进行适当恢复。
8.**设计模式**:使用设计模式如工厂模式、单例模式和观察者模式等,可以使代码更易于理解和维护。
9.**测试**:单元测试和集成测试是保证代码质量的关键。
C++有如GoogleTest这样的测试框架,可以帮助编写和执行测试用例。
10.**文档编写**:TXT说明文档可能是对软件功能、安装步骤、使用方法及常见问题的详细解释,有助于用户快速上手。
通过这个C++即时通讯软件项目,开发者不仅可以深入理解C++的高级特性,还能掌握网络编程、多线程、GUI设计等多个领域的实践知识,对于提升综合编程技能大有裨益。
对于初学者来说,这是一个很好的学习平台,能够将理论知识与实际操作相结合。
2025/9/20 15:19:04 279KB 网络编程
1
按着官网手册敲是不是不对?看这个!基于stm32f103的,sim800c,tcp协议透传
2025/9/18 8:29:14 4KB stm32f103 sim800c keil TCP透传
1
MX虚拟串口软件具有如下功能点1.【虚拟串口对】:创建两个互通的串口,不需要串口线。
2.【串口分身】:真实串口分成多个虚拟串口,可让多个软件访问同一台设备。
3.【串口聚合】:多个真实串口合成一个虚拟串口,一个软件可访问多台设备。
4.【串口群组】:向群组中任何串口发送数据,其它串口都能接收到。
5.【串口客户端】:串口转tcp客户端,方便实现远程串口应用。
6.【串口服务端】:tcp服务端转串口,安装在云服务器上,可与DTU直接串口互通。
1
1-19长度为100字节的应用层数据交给传输层传送,需加上20字节的TCP首部。
再交给网络层传送,需加上20字节的IP首部。
最后交给数据链路层的以太网传送,加上首部和尾部工18字节。
试求数据的传输效率。
数据的传输效率是指发送的应用层数据除以所发送的总数据(即应用数据加上各种首部和尾部的额外开销)。
若应用层数据长度为1000字节,数据的传输效率是多少?解:(1)100/(100+20+20+18)=63.3%(2)1000/(1000+20+20+18)=94.5%2-16共有4个站进行码分多址通信。
4个站的码片序列为A:(-1-1-1+1+1-1+1+1)B:(-1-
2025/9/10 15:31:32 171KB 计算机网络
1
C#通过TCP实现HL7医疗系统传输的协议,并使用MLLP协议接收HL7消息并解析,网上有很多解析类用不了,要不就一堆DLL文件没说明,我这个纯代码,有示列demo,文件中还包括socket服务端和客户端相关示列代码,有需要的可以下载,开发环境为VS2010,详细请看网址https://blog.csdn.net/bdb1018/article/details/106237819
1
目录序言前言第1章网络互连介绍 11.1认证目标1.01:网络互连模型 11.1.1网络的发展 21.1.2OSI模型 21.1.3封装 31.2认证目标1.02:物理层和数据链路层 41.2.1DIX和802.3Ethernet 51.2.2802.5令牌环网 71.2.3ANSIFDDI 81.2.4MAC地址 91.2.5接口 91.2.6广域网服务 121.3认证目标1.03:网络层和路径确定 171.3.1第3层地址 171.3.2已选择路由协议和路由选择协议 171.3.3路由选择算法和度 181.4认证目标1.04:传输层 181.4.1可靠性 181.4.2窗口机制 181.5认证目标1.05:上层协议 181.6认证目标1.06:Cisco路由器、交换机和集线器 181.7认证目标1.07:配置Cisco交换机和集线器 201.8认证总结 201.92分钟练习 221.10自我测试 23第2章从CiscoIOS软件开始 312.1认证目标2.01:用户界面 312.1.1用户模式和特权模式 312.1.2命令行界面 322.2认证目标2.02:路由器基础 352.2.1路由器元素 352.2.2路由器模式 352.2.3检查路由器状态 372.2.4Cisco发现协议 382.2.5远程访问路由器 392.2.6基本测试 392.2.7调试 402.2.8路由基础 412.3认证目标2.03:初始配置 432.3.1虚拟配置注册表设置 462.3.2启动序列:引导系统命令 472.3.3将配置传送到服务器或从服务器上复制配置 472.4认证目标2.04:自动安装配置数据 492.5认证总结 492.62分钟练习 502.7自我测试 51第3章IP寻址 583.1认证目标3.01:IP地址类 583.1.1IP地址的结构 583.1.2特殊情况:回路、广播和网络地址 593.1.3识别地址类 603.1.4子网掩码的重要性 613.1.5二进制和十进制互相转换 623.2认证目标3.02:子网划分和子网掩码 643.2.1子网划分的目的 653.2.2在默认子网掩码中加入位 653.3认证目标3.03:子网规划 663.3.1选择子网掩码 663.3.2主机数目的影响 663.3.3确定每个子网的地址范围 673.4认证目标3.04:复杂子网 683.4.1子网位穿越8位位组边界 683.4.2变长子网掩码 693.4.3超网划分 703.5认证目标3.05:用CiscoIOS配置IP地址 713.5.1设置IP地址和参数 713.5.2主机名称到地址的映射 713.5.3使用ping 723.5.4使用IPTRACE和Telnet 733.6认证总结 733.72分钟练习 743.8自我测试 75第4章TCP/IP协议 884.1认证目标4.01:应用层服务 894.2认证目标4.02:表示和会话层服务 894.2.1远程过程调用 894.2.2Socket 894.2.3传输层接口 904.2.4NetBIOS 904.3认证目标4.03:协议的详细结构 904.3.1传输层 914.3.2TCP 914.3.3UDP 934.4认证目标4.04:网络层 944.4.1网际协议 944.4.2地址解析协议 954.4.3反向地址解析协议 964.4.4逆向地址解析协议 964.4.5网际控制消息协议 964.5认证目标4.05:操作系统命令 974.5.1UNIX 97
2025/9/8 22:48:42 8.22MB CCNA 中文
1
Omnipeek是一款强大的网络分析工具,由SpiralSystems公司开发,主要用于网络性能监控、故障排除和网络安全分析。
这个“OmnipeekRalink_v5.1.12.48.zip”压缩包包含了适用于Ralink无线USB驱动的特定版本,即v5.1.12.48。
Ralink是一家知名的无线通信芯片制造商,被联发科(Mediatek)收购后,其技术广泛应用于无线网络设备,如Wi-Fi适配器。
在深入理解Omnipeek与Ralink无线USB驱动的关系之前,我们先来了解一下这两个关键组件:1.**Omnipeek**:-**功能**:Omnipeek提供实时网络流量捕获、协议解码、数据分析和故障诊断等功能。
它能够帮助IT管理员识别网络瓶颈,追踪性能问题,以及检测潜在的安全威胁。
-**应用领域**:Omnipeek适用于企业网络、数据中心、无线网络和有线网络环境,可以支持多种网络协议,包括TCP/IP、UDP、HTTP、HTTPS等。
-**界面与操作**:Omnipeek拥有用户友好的图形界面,使得非专业人员也能轻松进行网络监控和分析。
-**特色**:支持多接口同时捕获,能够进行深度包检查(DeepPacketInspection,DPI),并提供丰富的报告和图表,便于理解和解释网络行为。
2.**Ralink无线USB驱动**:-**作用**:无线USB驱动是连接Ralink无线芯片到计算机操作系统的关键组件,负责处理无线通信的硬件层面,确保数据正确传输。
-**版本更新**:驱动程序的更新通常是为了修复已知问题、提高兼容性、增强性能或增加新特性。
v5.1.12.48是针对Ralink无线设备的一个特定版本。
-**兼容性**:此驱动可能适用于不同型号的Ralink无线USB设备,确保它们能在各种操作系统环境下正常工作,例如Windows。
结合这两个组件,OmnipeekRalink_v5.1.12.48.zip压缩包的用途在于:1.**网络监控**:安装这个驱动后,Omnipeek可以更好地识别和解析Ralink无线USB设备产生的网络流量,提供全面的网络监控。
2.**故障排查**:如果遇到Ralink无线设备的连接问题,使用Omnipeek进行抓包分析,可以定位问题所在,如丢包、延迟或错误帧。
3.**性能优化**:通过Omnipeek的性能分析功能,可以评估Ralink无线设备的网络性能,并依据分析结果进行调优。
4.**安全检查**:Omnipeek的网络安全功能可以帮助检测潜在的无线网络安全风险,例如非法接入点、未授权的数据传输等。
"OmnipeekRalink_v5.1.12.48.zip"是为了解决Ralink无线USB设备在使用Omnipeek时的兼容性和性能问题,通过提供定制化的驱动程序,确保网络分析的准确性和效率。
在日常IT管理中,正确安装和使用这样的工具组合,对于提升网络管理和维护的效率至关重要。
2.57MB Omnipeek
1
ESP8266的TCP通信
2025/9/1 8:07:18 2.4MB ESP8266的 TCP通信
1
共 1000 条记录 首页 上一页 下一页 尾页
在日常工作中,钉钉打卡成了我生活中不可或缺的一部分。然而,有时候这个看似简单的任务却给我带来了不少烦恼。 每天早晚,我总是得牢记打开钉钉应用,点击"工作台",再找到"考勤打卡"进行签到。有时候因为工作忙碌,会忘记打卡,导致考勤异常,影响当月的工作评价。而且,由于我使用的是苹果手机,有时候系统更新后,钉钉的某些功能会出现异常,使得打卡变得更加麻烦。 另外,我的家人使用的是安卓手机,他们也经常抱怨钉钉打卡的繁琐。尤其是对于那些不太熟悉手机操作的长辈来说,每次打卡都是一次挑战。他们总是担心自己会操作失误,导致打卡失败。 为了解决这些烦恼,我开始思考是否可以通过编写一个全自动化脚本来实现钉钉打卡。经过一段时间的摸索和学习,我终于成功编写出了一个适用于苹果和安卓系统的钉钉打卡脚本。
2024-04-09 15:03 15KB 钉钉 钉钉打卡