本资源为利用递推最小二乘算法对永磁同步电机的所有四个参数(定子电阻,转子磁链,d轴和q轴电感进行在线估计的仿真模型和有逆变器死区补偿的参数辨识模型
2025/10/4 12:27:21 185KB 永磁 同步电机 递推 最小二乘
1
目录1.一般最小二乘法31.1.一次计算最小二乘算法31.2.递推最小二乘算法32.遗忘因子最小二乘算法62.1.一次计算法62.2.递推算法63.限定记忆最小二乘递推算法94.偏差补偿最小二乘法115.增广最小二乘法136.广义最小二乘法157.辅助变量法178.二步法199.多级最小二乘法2110.Yule-Walker辨识算法23Matlab程序附录24附录1、最小二乘一次计算法24附录2、最小二乘递推算法25附录3、遗忘因子最小二乘一次计算法26附录4、遗忘因子最小二乘递推算法27附录5、限定记忆最小二乘递推算法29附录6、偏差补偿最小二乘递推算法31附录7、增广最小二乘递推算法32附录8、广义最小二乘递推算法34附录9、辅助变量法36附录10、二步法38附录11、多级最小二乘法39附录12、Yule-Walker辨识算法42
1
常用算法设计方法详细解析(含源代码)算法是问题求解过程的精确描述,一个算法由有限条可完全机械地执行的、有确定结果的指令组成。
指令正确地描述了要完成的任务和它们被执行的顺序。
计算机按算法指令所描述的顺序执行算法的指令能在有限的步骤内终止,或终止于给出问题的解,或终止于指出问题对此输入数据无解。
通常求解一个问题可能会有多种算法可供选择,选择的主要标准是算法的正确性和可靠性,简单性和易理解性。
其次是算法所需要的存储空间少和执行更快等。
算法设计是一件非常困难的工作,经常采用的算法设计技术主要有迭代法、穷举搜索法、递推法、贪婪法、回溯法、分治法、动态规划法等等。
另外,为了更简洁的形式设计和藐视算法,在算法设计时又常常采用递归技术,用递归描述算法。
一、迭代法二、穷举搜索法三、递推法四、递归五、回溯法六、贪婪法七、分治法八、动态规划法
1
本人精心整理自互联网,解压后约150MB,倍增、博弈、递归、递推、贪心、图论、动归、数论、搜索、数据结构(各种树形)、位运算、随机化、分治、字符串、排序、几何当然noi的部分高级算法并未涉及,但针对noip是相当全面的!!
2025/8/11 7:46:25 46.29MB noip 算法 算法全集 信息学竞赛
1
本书是系统阐述组合数学基础、理论、方法和实例的优秀教材,出版三十多年来多次改版,被MIT、哥伦比亚大学、UIUC、威斯康星大学等众多国外高校采用,对国内外组合数学教学产生了较大影响,也是相关学科的主要参考文献之一。
本书侧重于组合数学的概念和思想,包括鸽巢原理、计数技术、排列与组合、P條ya计数法、二项式系数、容斥原理、生成函数和递推关系以及组合结构(匹配、试验设计、图)等,深入浅出地表达了作者对该领域全面和深刻的理解。
自2004年出版第4版以来,作者又对本书进行了全面的修订和更新,第5版增加了有限概率、相异代表系、匹配数等内容。
有第四版和第五版pdf,方便比较。
还有答案供参考。
2025/7/16 2:47:24 64.48MB 组合数学
1
matlabAR模型参数谱估计,建立yule-walker方程,通过levinson-durbin递推法解方程。
本次实验通过调用matlab现有函数实现。
2025/7/15 11:45:43 438B AR模型
1

数据挖掘技术在科技信息管理中的应用研究一、数据挖掘的定义与目的数据挖掘是一种从大量数据中抽取或“挖掘”信息的过程,旨在发现数据中的潜在规律、模式和关联关系。
它不是简单的数据查询或者数据处理,而是通过特定算法对数据进行分析,以期得到非平凡的、隐含的、先前未知的且具有潜在价值的信息或知识。
这一技术对于科技信息管理尤其重要,因为它可以帮助管理者从海量信息中提取有价值的数据,为决策提供科学依据。
二、数据挖掘在科技信息管理中的应用科技管理信息化的发展导致了信息量的大幅增长,给信息的提取带来了难度。
数据挖掘技术可以有效地挖掘海量数据背后未知的规律或模式,为科技管理决策提供了有力的依据和支持。
在科技信息管理中,数据挖掘可以用来分析科技人员、科技成果、科技项目之间的关联关系,通过数据挖掘模型,发现三者之间的深层关系,为科技管理提供决策支持。
三、数据挖掘技术的分类数据挖掘技术可以分为多个类别,其中包括关联规则、决策树、聚类、分类、变化和偏差分析、回归分析、Web页挖掘等。
每种技术有其特定的适用场景和分析方法。
例如,关联规则挖掘主要通过发现不同数据项集之间的隐藏关联规则来工作,而决策树分析则是构建一个模型,用以预测目标变量的值。
四、关联规则与Apriori算法关联规则挖掘在数据挖掘中是一种重要的技术。
它通过在数据库中找出置信度和支持度都大于给定阈值的规则,揭示数据项集之间的潜在关联。
Apriori算法是挖掘布尔关联规则频繁项集的算法之一,基于两阶段频集的递推思想,主要通过逐层搜索迭代方法,从大量数据中找出项集之间的关系或规则。
该算法对于处理科技信息管理中的大量数据尤为有效。
五、数据挖掘过程数据挖掘的过程可以分为几个阶段:问题定义、数据抽取、数据预处理、数据挖掘、结果评估与表示等。
在问题定义阶段,首先要明确数据挖掘的目标和任务;
数据抽取阶段,是从数据库或数据仓库中提取相关数据;
数据预处理阶段,对提取的数据进行清洗、转换等操作,使之适合进行挖掘;
数据挖掘阶段,运用特定算法对预处理后的数据进行分析,以提取信息和知识;
最后在结果评估与表示阶段,对挖掘出的模式进行评价,并以易于理解的方式展示结果。
六、数据挖掘在安阳市科技信息管理系统中的应用实例文章中提到安阳市科学技术信息研究所利用数据挖掘技术,通过安阳市科技信息管理系统,对512名科技人员、899项科技成果和3014项科技项目进行关联分析。
通过构建数据挖掘模型,研究科技人员的年龄、职称、单位等信息与所产出的科技成果、参与的科技项目之间的关联规则。
通过这种方式,不仅能够发现隐藏的关系和规律,还能够为科技人才合理分配和科技项目管理提供参考。
七、数据准备与处理数据准备是数据挖掘过程中的首要步骤,它包括数据选择、数据预处理和数据变换等环节。
数据选择需要从现有的数据库或数据仓库中提取相关数据,形成目标数据集。
数据预处理和变换则是为了消除数据中的噪声和不一致性,提高数据质量,确保挖掘结果的准确性。
八、结论随着信息化和大数据时代的到来,数据挖掘技术已经成为科技信息管理不可或缺的重要工具。
它能够从庞大的科技信息数据库中提炼出有价值的信息,帮助管理者做出更加精准和高效的决策。
通过持续研究和实践,数据挖掘在科技信息管理中的应用将更加广泛,对科技进步的贡献也将更加显著。
2025/6/16 2:41:25 274KB
1
国科大的算法设计与分析相关1-5章复习题第一章样例:1.讲义习题一:第1(执行步改为关键操作数)、第2、3、6、7题习题一1答:执行步4pmn+3pm+2m+1;关键操作2n*m*p2方法一答:2n-2次方法二答:2n-2次31)证明:任给c,n>c,则10n2>cn。
不存在c使10n22c时,logn>c,从而n2logn>=cn2,同上。
6答:logn,n2/3,20n,4n2,3n,n!7答:1)6+n2)3)任意n2.讲义习题二:第5题。
答:c、e是割点。
每点的DFN、L值:A1,1、B2,1、C3,1、D4,4、E5,1、F6,5、G7,5。
最大连通分支CD、EFG、ABCE。
3.考虑下述选择排序算法:输入:n个不等的整数的数组A[1..n]输出:按递增次序排序的AFori:=1ton-1Forj:=i+1tonIfA[j]<A[i]thenA[i]A[j]问:(1)最坏情况下做多少次比较运算?答1+2+..+n-1=n(n-1)/2(2)最坏情况下做多少次交换运算?在什么输入时发生?n(n-1)/2,每次比较都交换,交换次数n(n-1)/2。
4.考虑下面的每对函数f(n)和g(n),比较他们的阶。
(1)f(n)=(n2-n)/2,g(n)=6n(2)f(n)=n+2,g(n)=n2(3)f(n)=n+nlogn,g(n)=n(4)f(n)=log(n!),g(n)=答:(1)g(n)=O(f(n))(2)f(n)=O(g(n)(3)f(n)=O(g(n)(4)f(n)=O(g(n)5.在表中填入true或false.答案:f(n)g(n)f(n)=O(g(n)f(n)=(g(n))f(n)=(g(n))12n3+3n100n2+2n+100FTF250n+logn10n+loglognTTT350nlogn10nloglognFTF4lognLog2nTFF5n!5nFTF6.用迭代法求解下列递推方程:(1)(2),n=2k答:(1)T(n)=T(n-1)+n-1=T(n-2)+n-2+n-1=…=T(1)+1+2+…+n-1=n(n-1)/2=O(n2)(2)T(n)=2T(n/2)+n-1=2(2T(n/4)+n/2-1)+n-1=4T(n/4)+n-2+n-1=4(2T(n/23)+n/4-1)+n-2+n-1=23T(n/23)+n-4+n-2+n-1
2025/5/4 15:09:15 4.03MB 算法设计与分析 国科大 中科院 习题
1
本程序是仿真了一个卡尔曼滤波进行系统辨识的实验,把卡尔曼的递推过程写的很清晰,便于大家更好的理解卡尔曼滤波
2025/4/25 19:49:41 823B 卡尔曼滤波 系统辨识 matlab
1
递推极大似然参数辨识法MATLAB程序clearall%清理工作间变量closeall%关闭所有图形clc%清屏%%%%M序列、噪声信号产生%%%%L=1200;%四位移位积存器产生的M序列的周期y1=1;y2=1;y3=1;y4=0;%四个移位积存器的输出初始值fori=1:L;x1=xor(y3,y4);%第一个移位积存器的输入信号x2=y1;%第二个移位积存器的输入信号x3=y2;%第三个移位积存器的输入信号x4=y3;%第四个移位积存器的输入信号y(i)=y4;%第四个移位积存器的输出信号,幅值"0"和"1"ify(i)>0.5,u(i)=-1;%M序列的值为"1"时,辨识的输入信号取“-1”elseu(i)=1;%M序列的值为"0"时,辨识的输入信号取“1”endy1=x1;y2=x2;y3=x3;y4=x4;%为下一次的输入信号作准备end------
2025/4/16 16:21:31 2KB 极大似然法
1
共 59 条记录 首页 上一页 下一页 尾页
在日常工作中,钉钉打卡成了我生活中不可或缺的一部分。然而,有时候这个看似简单的任务却给我带来了不少烦恼。 每天早晚,我总是得牢记打开钉钉应用,点击"工作台",再找到"考勤打卡"进行签到。有时候因为工作忙碌,会忘记打卡,导致考勤异常,影响当月的工作评价。而且,由于我使用的是苹果手机,有时候系统更新后,钉钉的某些功能会出现异常,使得打卡变得更加麻烦。 另外,我的家人使用的是安卓手机,他们也经常抱怨钉钉打卡的繁琐。尤其是对于那些不太熟悉手机操作的长辈来说,每次打卡都是一次挑战。他们总是担心自己会操作失误,导致打卡失败。 为了解决这些烦恼,我开始思考是否可以通过编写一个全自动化脚本来实现钉钉打卡。经过一段时间的摸索和学习,我终于成功编写出了一个适用于苹果和安卓系统的钉钉打卡脚本。
2024-04-09 15:03 15KB 钉钉 钉钉打卡