bp神经网络识别图片,具体算法和之rbf算法略有不同,毕设或建模推荐学习。
2026/1/1 10:57:06 2.53MB matlab 毕设 算法 建模
1
经典文献“Non-negativeMatrixFactorizationwithSparsenessConstraints”的实现代码(MATLAB)
2025/12/31 16:45:09 15.01MB 稀疏非负矩阵
1
这个demo集成了百度人脸识别的活体人脸实时采集功能,对图片无效,只识别活体
2025/12/31 14:07:27 19.17MB 人脸实时采集
1
可以破解5.12。
编译飞思卡尔KE06程序通过,有截图另外如果J-link固件更新,导致无法识别J-link,你可以参见这里的方法刷固件。
http://wenku.baidu.com/link?url=SIbqmNWnrZMT2Pt7QHd0AZjCTXggOUDEue6bApN1adnGTNXjBzIaIrHrpw5KUmar1kCM6XeobWOfr5nl-3OdAkZZ5JXd-7loP50NWzYqbVS注意:总共有两个固件:1、复件jlink-v8.bin是我修改ID后的固件,直接刷这个,然后进入keilDebug点击更新j-link,就可以正常识别下载了。
(建议刷这个固件)2、jlink-v8.bin这是没有修改ID之前的固件。
WinHex.1641965899.zip是修改固件ID的工具InstallAT91-ISPv1.13.exe是刷固件的工具
2025/12/31 11:16:31 6.42MB keil arm MDK_5.12 crack
1
在机器人技术领域,路径规划是核心问题之一,特别是在避障任务中。
本算法专注于解决这一问题,提供了一种通用的方法来帮助机器人找到穿越复杂环境的最短路径。
以下是该算法的关键知识点及其详细解释:1.**路径规划算法**:路径规划通常涉及到搜索算法,如A*算法或Dijkstra算法,它们能有效地寻找从起点到终点的最优路径。
在这个通用算法中,机器人可能采用一种类似的搜索策略来避开障碍物。
2.**MATLAB编程**:MATLAB是一种强大的数学计算和数据分析工具,常用于科学和工程领域的建模与仿真。
在这个项目中,MATLAB被用来实现算法,处理路径规划问题。
3.**避障**:避障是机器人自主导航的关键部分,它需要实时地感知周围环境并计算出安全的移动路径。
这个算法可能利用传感器数据(如激光雷达或摄像头)来识别和避开障碍物。
4.**障碍物区域设置**:用户可以根据实际情况自定义障碍物的位置,这表明算法具有一定的灵活性和适应性,能够应对不同的环境条件。
5.**50条路径比较**:算法会生成50条可能的路径,并从中选取最短的一条。
这可能涉及到多条路径的评估和优化,可能使用了某种启发式方法来快速收敛到最优解。
6.**主程序参数**:“主程序参数.txt”文件很可能包含了算法运行时所需的关键参数,如机器人的起始位置、目标位置、障碍物的坐标以及搜索策略的设定值等。
7.**G2D.m**:此文件可能是将高维数据转化为二维表示的函数,便于可视化和理解机器人的路径规划。
在MATLAB中,图形化用户界面或数据可视化通常使用这样的函数来呈现结果。
8.**Route.m**:这个文件很可能是路径规划的核心函数,它可能包含了路径生成、障碍物规避、路径长度计算以及路径选择的逻辑。
这个算法通过结合MATLAB的计算能力,实现了避障路径规划的自动化,允许用户根据实际场景调整障碍物位置,同时确保找到最短路径。
通过分析“主程序参数.txt”和运行“Route.m”及“G2D.m”文件,我们可以深入了解算法的运作机制和优化过程。
在实际应用中,这样的算法可以应用于无人机送货、自动驾驶汽车或服务机器人等各种环境中的自主导航。
2025/12/31 11:01:12 3KB MATLAB 机器人避障 最优路径
1
支持向量机的实现代码,用c语言编写,有源码和例子,是学习模式识别的难得的资源支持向量机的实现代码,用c语言编写,有源码和例子,是学习模式识别的难得的资源
2025/12/30 12:25:36 10.12MB 支持向量机
1
倾斜图像霍夫变换旋转,并进行识别特定区域进行裁剪
2025/12/30 4:31:19 4KB 图片旋转矫正 图片区域识别
1
车牌预处理过程的好坏直接影响到车牌图像进行后期处理过程,比如车牌字符分割等。
车牌预处理也是尽可能的消除噪声,减少后期处理带来的不必要的麻烦。
输入的车牌是24Bit的BMP真彩色图像,车牌照有黄底黑字,蓝底白字等颜色,为了将这些车牌图像一并处理,就要先将车牌进行灰度化处理,然后进行二值化(黑白)处理。
2025/12/30 1:50:15 64KB 车牌自动识别
1
TensorFlow实现的深度网络表情识别
2025/12/29 12:38:39 14.73MB Python开发-机器学习
1
1.2空间音频不再是苹果用户的专属空间音频最早出现在苹果2020年发布的iOS14上,使用支持空间音频的设备,可以感受到声音从360度方向传来,实现更沉浸的环绕立体声效果。
如今这一功能,Android12用户也能享受了。
Android12支持最新的MPEG-H(一种能带来沉浸式的声音体验的音频标准),并针对多达24个音频通道进行了优化,而之前只有8个通道。
开发者可以利用这一特性,让Android设备的影音体验提上一个台阶。
除了空间音频,Android12上的App还可以通过手机的振动马达,提供与声音相匹配的触觉反馈,实现更身临其境的游戏和音频体验。
例如,可以使用通过不同铃声对应触觉反馈来识别来电者,或者在赛车游戏中模拟崎岖路面的振动。
1.3简洁的播放控制与交互,方便切歌看剧打游戏很多用户的手机上,都安装了不止一个视频或音乐软件,在不同影音和游戏软件中进行切换控制,已经成为了一个交互痛点。
对此Android12进行了三项优化:**a.调整播放控制图标UI。
**在锁屏和下拉通知栏中,谷歌将播放控制的图标做得更大了。
歌曲名称和歌手以单行形式显示在上方,播放和切歌按钮在底部,专辑封面在左侧,看起来比以前更紧凑了。
1.2空间音频不再是苹果用户的专属空间音频最早出现在苹果2020年发布的iOS14上,使用支持空间音频的设备,可以感受到声音从360度方向传来,实现更沉浸的环绕立体声效果。
如今这一功能,Android12用户也能享受了。
Android12支持最新的MPEG-H(一种能带来沉浸式的声音体验的音频标准),并针对多达24个音频通道进行了优化,而之前只有8个通道。
开发者可以利用这一特性,让Android设备的影音体验提上一个台阶。
除了空间音频,Android12上的App还可以通过手机的振动马达,提供与声音相匹配的触觉反馈,实现更身临其境的游戏和音频体验。
例如,可以使用通过不同铃声对应触觉反馈来识别来电者,或者在赛车游戏中模拟崎岖路面的振动。
1.3简洁的播放控制与交互,方便切歌看剧打游戏很多用户的手机上,都安装了不止一个视频或音乐软件,在不同影音和游戏软件中进行切换控制,已经成为了一个交互痛点。
对此Android12进行了三项优化:**a.调整播放控制图标UI。
**在锁屏和下拉通知栏中,谷歌将播放控制的图标做得更大了。
歌曲名称和歌手以单行形式显示在上方,播放和切歌按钮在底部,专辑封面在左侧,看起来比以前更紧凑了。
1.2空间音频不再是苹果用户的专属空间音频最早出现在苹果2020年发布的iOS14上,使用支持空间音频的设备,可以感受到声音从360度方向传来,实现更沉浸的环绕立体声效果。
如今这一功能,Android12用户也能享受了。
Android12支持最新的MPEG-H(一种能带来沉浸式的声音体验的音频标准),并针对多达24个音频通道进行了优化,而之前只有8个通道。
开发者可以利用这一特性,让Android设备的影音体验提上一个台阶。
除了空间音频,Android12上的App还可以通过手机的振动马达,提供与声音相匹配的触觉反馈,实现更身临其境的游戏和音频体验。
例如,可以使用通过不同铃声对应触觉反馈来识别来电者,或者在赛车游戏中模拟崎岖路面的振动。
1.3简洁的播放控制与交互,方便切歌看剧打游戏很多用户的手机上,都安装了不止一个视频或音乐软件,在不同影音和游戏软件中进行切换控制,已经成为了一个交互痛点。
对此Android12进行了三项优化:**a.调整播放控制图标UI。
**在锁屏和下拉通知栏中,谷歌将播放控制的图标做得更大了。
歌曲名称和歌手以单行形式显示在上方,播放和切歌按钮在底部,专辑封面在左侧,看起来比以前更紧凑了。
1.2空间音频不再是苹果用户的专属空间音频最早出现在苹果2020年发布的iOS14上,使用支持空间音频的设备,可以感受到声音从360度方向传来,实现更沉浸的环绕立体声效果。
如今这一功能,Android12用户也能享受了。
Android12支持最新的MPEG-H(一种能带来沉浸式的声音体验的音频标准),并针对多达24个音频通道进行了优化,而之前只有8个通道。
开发者可以利用这一特性,让Android设备的影音体验提上一个台阶。
除了空间音频,Android12上的App还可以通过手机的振动马达,提供与声音相匹配的触觉反馈,实现更身临其境的游戏和音频体验。
例如,可以使用通过不同铃声对应触觉反馈来识别来电者,
2025/12/29 4:08:26 379B PassportFeignSer
1
共 1000 条记录 首页 上一页 下一页 尾页
在日常工作中,钉钉打卡成了我生活中不可或缺的一部分。然而,有时候这个看似简单的任务却给我带来了不少烦恼。 每天早晚,我总是得牢记打开钉钉应用,点击"工作台",再找到"考勤打卡"进行签到。有时候因为工作忙碌,会忘记打卡,导致考勤异常,影响当月的工作评价。而且,由于我使用的是苹果手机,有时候系统更新后,钉钉的某些功能会出现异常,使得打卡变得更加麻烦。 另外,我的家人使用的是安卓手机,他们也经常抱怨钉钉打卡的繁琐。尤其是对于那些不太熟悉手机操作的长辈来说,每次打卡都是一次挑战。他们总是担心自己会操作失误,导致打卡失败。 为了解决这些烦恼,我开始思考是否可以通过编写一个全自动化脚本来实现钉钉打卡。经过一段时间的摸索和学习,我终于成功编写出了一个适用于苹果和安卓系统的钉钉打卡脚本。
2024-04-09 15:03 15KB 钉钉 钉钉打卡