该程序需要在主页面先下载wall_delay程序,该程序在墙后建立了长为2米,宽为0.6米的矩形,利用后投影算法以及快速时延估计进行成像。
并且计算最佳带宽,最佳中心频率,阵列天线数量,陈列天线间隔。
使得成像质量很好。
缺点在于:计算量偏大。
1
这是一种图像视觉显著性提取方法,对应文献S.Goferman,L.Zelnik-Manor,andA.Tal,“Context-awaresaliencydetection,”inIEEECVPR,2010,pp.2376–2383.该文献中的模型同时考虑了图像的局部特征和全局特征,克服了显著区域范围是固定模型以及区域只考虑到前景图像,忽视含有信息量的背景信息的做法,能提取出显著区域轮廓,利于后续处理,但是需要计算图像中每个像素点相当于局部区域的显著性,计算量较大。
2025/3/29 0:47:36 496KB CA算法 Matlab 显著性检测
1
运动目标检测在计算机视觉,图像处理,模式识别等多领域有着广泛的应用,经历了多年的研究和探索,针对运动目标检测的算法层出不穷,我们也积累了许多相关的算法。
但是我们还远没有完成对这个充满挑战的领域的探索。
本文对运动目标检测的技术进行了一定的研究,实现了基于canny算子和光流法相结合的运动目标检测方法。
为了能够准确把握这个行业的动态,本文首先介绍了运动目标检测的三大经典方法:背景相减法,帧差法,光流法。
同时比较了各自的优缺点。
帧差法具有易实现,计算量小的优点,但是却无法准确的检测出运动目标的完整轮廓。
光流法具有对不断运动的运动目标进行目标检测,但是它却有很大的计算量,同时对噪声也比较敏感。
为了可以对运动目标进行更好的识别,我们提出了边缘检测算子与光流法相结合的新方法。
在对多种边缘检测算子进行了了解之后,我们确定了利用canny算子进行边缘检测,并且结合光流法进行运动目标检测的方法。
在用canny算子检测出运动物体边缘之后,借助光流法计算出物体的运动场,同时结合最大类间方差法分辨出运动目标和背景,接着将物体的边缘信息和物体的运动信息进行融合,最后运用数学形态学的方法对结果进行处理,得到最终的运动目标。
通过实验,我们发现该方法既克服了帧差法不能准确检测出运动物体轮廓,和光流法抗噪声能力差的缺点,可以准确检测运动目标,对运动目标具有更好的检测效果
2025/3/25 14:37:01 15.94MB 运动目标检测 CANNY算子 光流 matlab
1
区域复制粘贴篡改检测算法是以图像块匹配为基础的,然而传统的匹配算法计算量大,匹配速度慢,效率低下.针对现有的图像内区域复制粘贴检测算法计算量大,时间复杂度高的问题提出一种有效快速的检测与定位篡改区域算法.首先利用小波变换获取图像低频区域,然后对得到的图像低频部分进行分割,然后对分割后得到的每个图像块进行DCT变换,通过特征向量排序缩小匹配空间,最后通过经验阈值进行真伪鉴定,实验结果表明该算法过程中除掉图像冗余,减少检测块数,降低了时间复杂度,提高了检测效率。
1
用数理统计方法,推导出波动光学MTF数值计算的误差估计式,它适用于对不同的数值计算方法进行自相关积分所求得的MTF值进行误差估计.本文根据波动光学的基本性质,提出了新的MTF数值计算方法,它具有较高的数值精度,更可观的计算量大大减少.
1
算法设计需要估算计算量和存储量。
组合数学研究计数和枚举的方法和理论。
2024/10/15 7:03:01 6.5MB 组合数学 计算机应用 计算量 存储量
1
多线程计算pi,并且做性能分析。
单线程与多线程对比计算量相同,线程数不同例如,N取1000,000,测试使用1、2、3、4……个线程时所需要的时间。
线程数相同,计算量不同例如,只考察单线程和双线程的性能对比,N分别取不同的数值。
2024/9/5 17:44:17 577B pi
1
提出了一种用于全局优化的混合差分进化算法。
在新算法中,混沌系统的随机性被用来在搜索空间中尽可能多地散布个体,模式搜索方法被用来加速局部开发,而DE算子被用来跳到一个更好的点。
证明了全局收敛。
详细研究了三种典型的混沌系统。
在包含13个高维函数的基准示例上的数值实验表明,该新方法以较少的计算量实现了更高的成功率和最终解决方案。
2024/7/27 13:07:01 215KB differential evolutionary algorithm; global
1
Hopfield神经网络解决TSP问题利用神经网络解决组合优化问题是神经网络应用的一个重要方面。
所谓组合优化问题,就是在给定约束条件下,使目标函数极小(或极大)的变量组合问题。
将Hopfield网络应用于求解组合优化问题,把目标函数转化为网络的能量函数,把问题的变量对应到网络的状态。
这样,当网络的能量函数收敛于极小值时,问题的最优解也随之求出。
由于神经网络是并行计算的,其计算量不随维数的增加而发生指数性“爆炸”,因而对于优化问题的高速计算特别有效。
2024/6/16 16:58:18 1.99MB 神经网络 TSP问题
1
基于特征点的图像匹配方法的关键是准确快速地将可靠的特征点提取出来。
经典归一化互相关匹配法属于基于特征点匹配方法中的一种,归一化互相关匹配法具有操作简单,匹配精度高等优点,但其计算量庞大,难以满足实时跟踪的要求。
提出了一种基于序贯相似性检测的归一化互相关快速匹配方法,并对提出的改进方法进行实验验证。
实验表明,该方法可以准确快速的进行特征点匹配,减少了算法的计算时间,有效地减少了发生误匹配的概率。
1
共 41 条记录 首页 上一页 下一页 尾页
在日常工作中,钉钉打卡成了我生活中不可或缺的一部分。然而,有时候这个看似简单的任务却给我带来了不少烦恼。 每天早晚,我总是得牢记打开钉钉应用,点击"工作台",再找到"考勤打卡"进行签到。有时候因为工作忙碌,会忘记打卡,导致考勤异常,影响当月的工作评价。而且,由于我使用的是苹果手机,有时候系统更新后,钉钉的某些功能会出现异常,使得打卡变得更加麻烦。 另外,我的家人使用的是安卓手机,他们也经常抱怨钉钉打卡的繁琐。尤其是对于那些不太熟悉手机操作的长辈来说,每次打卡都是一次挑战。他们总是担心自己会操作失误,导致打卡失败。 为了解决这些烦恼,我开始思考是否可以通过编写一个全自动化脚本来实现钉钉打卡。经过一段时间的摸索和学习,我终于成功编写出了一个适用于苹果和安卓系统的钉钉打卡脚本。
2024-04-09 15:03 15KB 钉钉 钉钉打卡