用算法程序集(C语言描述)(第五版)+源代码第1章多项式的计算1.1一维多项式求值1.2一维多项式多组求值1.3二维多项式求值1.4复系数多项式求值1.5多项式相乘1.6复系数多项式相乘1.7多项式相除1.8复系数多项式相除第2章复数运算2.1复数乘法2.2负数除法2.3复数乘幂2.4复数的n次方根2.5复数指数2.6复数对数2.7复数正弦2.8复数余弦第3章随机数的产生3.1产生0到1之间均匀分布的一个随机数3.2产生0到1之间均匀分布的随机数序列3.3产生任意区间内均匀分布的一个随机整数3.4产生任意区间内均匀分布的随机整数序列3.5产生任意均值与方差的正态分布的一个随机数3.6产生任意均值与方差的正态分布的随机数序列第4章矩阵运算4.1实矩阵相乘4.2复矩阵相乘4.3一般实矩阵求逆4.4一般复矩阵求逆4.5对称正定矩阵的求逆4.6托伯利兹矩阵求逆的特兰持方法4.7求一般行列式的值4.8求矩阵的值4.9对称正定矩阵的乔里斯基分解与列式求值4.10矩阵的三角分解4.11一般实矩阵的QR分解4.12一般实矩阵的奇异值分解4.13求广义逆的奇异值分解法第5章矩阵特征值与特征向量的计算5.1约化对称矩阵为对称三对角阵的豪斯荷尔德变换法5.2求对称三对角阵的全部特征值与特征向量5.3约化一般实矩阵为赫申伯格矩阵的初等相似变换法5.4求赫身伯格矩阵全部特征的QR方法5.5求实对称矩阵特征值与特征向量的雅可比法5.6求实对称矩阵特征值与特征向量的雅可比过关法第6章线性代数方程组的求解6.1求解实系数方程组的全选主元高斯消去法6.2求解实系数方程组的全选主元高斯-约当消去法6.3求解复系数方程组的全选主元高斯消去法6.4求解复系数方程组的全选主元高斯-约当消去法6.5求解三对角线方程组的追赶法6.6求解一般带型方程组6.7求解对称方程组的分解法6.8求解对称正定方程组的平方根法6.9求解大型系数方程组6.10求解托伯利兹方程组的列文逊方法6.11高斯-塞德尔失代法6.12求解对称正定方程组的共岿梯度法6.13求解线性最小二乘文体的豪斯伯尔德变换法6.14求解线性最小二乘问题的广义逆法6.15求解病态方程组第7章非线性方程与方程组的求解7.1求非线性方程一个实根的对分法7.2求非线性方程一个实根的牛顿法7.3求非线性方程一个实根的埃特金矢代法7.4求非线性方程一个实根的连分法7.5求实系数代数方程全部的QR方法7.6求实系数方程全部的牛顿下山法7.7求复系数方程的全部根牛顿下山法7.8求非线性方程组一组实根的梯度法7.9求非线性方程组一组实根的拟牛顿法7.10求非线性方程组最小二乘解的广义逆法7.11求非线性方程一个实根的蒙特卡洛法7.12求实函数或复函数方程一个复根的蒙特卡洛法7.13求非线性方程组一组实根的蒙特卡洛法第8章插值与逼近8.1一元全区间插值8.2一元三点插值8.3连分式插值8.4埃尔米特插值8.5特金逐步插值8.6光滑插值8.7第一种边界条件的三次样条函数插值8.8第二种边界条件的三次样条函数插值8.9第三种边界条件的三次样条函数插值8.10二元三点插值8.11二元全区间插值8.12最小二乘曲线拟合8.13切比雪夫曲线拟合8.14最佳一致逼近的里米兹方法8.15矩形域的最小二乘曲线拟合第9章数值积分9.1变补长梯形求积法9.2变步长辛卜生求积法9.3自适应梯形求积法9.4龙贝格求积法9.5计算一维积分的连分式法9.6高振荡函数求积法9.7勒让德-高斯求积法9.8拉盖尔-高斯求积法9.9埃尔米特-高斯求积法9.10切比雪夫求积法9.11计算一维积分的蒙特卡洛法9.12变步长辛卜生二重积分方法9.13计算多重积分的高斯方法9.14计算二重积分的连分方式9.15计算多重积分的蒙特卡洛法第10章常微分方程组的求解10.1全区间积分的定步长欧拉方法10.2积分一步的变步长欧拉方法10.3全区间积分维梯方法10.4全区间积分的定步长龙格-库塔方法10.5积分一步的变步长龙格-库塔方法10.6积分一步的变步长基尔方法10.7全区间积分的变步长默森方法10.8积分一步的连分方式10.9全区间积分的双边法10.10全区间积分的阿当姆斯预报校正法10.11全区间积分的哈
2025/1/9 6:30:24 156.11MB 常用算法程序集 C语言 C++ 第五版
1
MATLAB语言常用算法程序集书中4-17章代码,都是一些常用的程序第4章:插值函数名功能Language求已知数据点的拉格朗日插值多项式Atken求已知数据点的艾特肯插值多项式Newton求已知数据点的均差形式的牛顿插值多项式Newtonforward求已知数据点的前向牛顿差分插值多项式Newtonback求已知数据点的后向牛顿差分插值多项式Gauss求已知数据点的高斯插值多项式Hermite求已知数据点的埃尔米特插值多项式SubHermite求已知数据点的分段三次埃尔米特插值多项式及其插值点处的值SecSample求已知数据点的二次样条插值多项式及其插值点处的值ThrSample1求已知数据点的第一类三次样条插值多项式及其插值点处的值ThrSample2求已知数据点的第二类三次样条插值多项式及其插值点处的值ThrSample3求已知数据点的第三类三次样条插值多项式及其插值点处的值BSample求已知数据点的第一类B样条的插值DCS用倒差商算法求已知数据点的有理分式形式的插值分式Neville用Neville算法求已知数据点的有理分式形式的插值分式FCZ用倒差商算法求已知数据点的有理分式形式的插值分式DL用双线性插值求已知点的插值DTL用二元三点拉格朗日插值求已知点的插值DH用分片双三次埃尔米特插值求插值点的z坐标第5章:函数逼近Chebyshev用切比雪夫多项式逼近已知函数Legendre用勒让德多项式逼近已知函数Pade用帕德形式的有理分式逼近已知函数lmz用列梅兹算法确定函数的最佳一致逼近多项式ZJPF求已知函数的最佳平方逼近多项式FZZ用傅立叶级数逼近已知的连续周期函数DFF离散周期数据点的傅立叶逼近SmartBJ用自适应分段线性法逼近已知函数SmartBJ用自适应样条逼近(第一类)已知函数multifit离散试验数据点的多项式曲线拟合LZXEC离散试验数据点的线性最小二乘拟合ZJZXEC离散试验数据点的正交多项式最小二乘拟合第6章:矩阵特征值计算Chapoly通过求矩阵特征多项式的根来求其特征值pmethod幂法求矩阵的主特征值及主特征向量rpmethod瑞利商加速幂法求对称矩阵的主特征值及主特征向量spmethod收缩法求矩阵全部特征值ipmethod收缩法求矩阵全部特征值dimethod位移逆幂法求矩阵离某个常数最近的特征值及其对应的特征向量qrtzQR基本算法求矩阵全部特征值hessqrtz海森伯格QR算法求矩阵全部特征值rqrtz瑞利商位移QR算法求矩阵全部特征值第7章:数值微分MidPoint中点公式求取导数ThreePoint三点法求函数的导数FivePoint五点法求函数的导数DiffBSample三次样条法求函数的导数SmartDF自适应法求函数的导数CISimpson辛普森数值微分法法求函数的导数Richason理查森外推算法求函数的导数ThreePoint2三点法求函数的二阶导数FourPoint2四点法求函数的二阶导数FivePoint2五点法求函数的二阶导数Diff2BSample三次样条法求函数的二阶导数第8章:数值积分CombineTraprl复合梯形公式求积分IntSimpson用辛普森系列公式求积分NewtonCotes用牛顿-科茨系列公式求积分IntGauss用高斯公式求积分IntGaussLada用高斯拉道公式求积分IntGaussLobato用高斯—洛巴托公式求积分IntSample用三次样条插值求积分IntPWC用抛物插值求积分IntGaussLager用高斯-拉盖尔公式求积分IntGaussHermite用高斯-埃尔米特公式求积分IntQBXF1求第一类切比雪夫积分IntQBXF2求第二类切比雪夫积分DblTraprl用梯形公式求重积分DblSimpson用辛普森公式求重积分IntDBGauss用高斯公式求重积分第9章:方程求根BenvliMAX贝努利法求按模最大实根BenvliMIN贝努利法求按模最小实根HalfInterval用二分法求方程的一个根hj用黄金分割法求方程的一个根StablePoint用不动点迭代法求方程的一个根AtkenStablePoint用艾肯特加速的不动点迭代法求方程的一个根StevenStablePoint用史蒂芬森加速的不动点迭代法求方程的一个根Secant用一般弦截法求方程的一个根SinleSecant用单点弦截法求方程的一个根DblSecant用双点弦截法求方程的一个根PallSecant用平行弦截法求方程的一个根ModifSecant用改进弦截法求方程的一个根StevenSecant用史蒂芬森法求方程的一个根PYZ用劈因子法求方程的一个二次因子Parabola用抛物线法求方程的一个根QBS用钱伯斯法求方程的一个根NewtonRoot用牛顿法求方程的一个根SimpleNewton用简化牛顿法求方程的一个根NewtonDown用牛顿下山法求方程的一个根YSNewton逐次压缩牛顿法求多项式的全部实根Union1用联合法1求方程的一个根TwoStep用两步迭代法求方程的一个根Montecarlo用蒙特卡洛法求方程的一个根MultiRoot求存在重根的方程的一个重根第10章:非线性方程组求解mulStablePoint用不动点迭代法求非线性方程组的一个根mulNewton用牛顿法法求非线性方程组的一个根mulDiscNewton用离散牛顿法法求非线性方程组的一个根mulMix用牛顿-雅可比迭代法求非线性方程组的一个根mulNewtonSOR用牛顿-SOR迭代法求非线性方程组的一个根mulDNewton用牛顿下山法求非线性方程组的一个根mulGXF1用两点割线法的第一种形式求非线性方程组的一个根mulGXF2用两点割线法的第二种形式求非线性方程组的一个根mulVNewton用拟牛顿法求非线性方程组的一组解mulRank1用对称秩1算法求非线性方程组的一个根mulDFP用D-F-P算法求非线性方程组的一组解mulBFS用B-F-S算法求非线性方程组的一个根mulNumYT用数值延拓法求非线性方程组的一组解DiffParam1用参数微分法中的欧拉法求非线性方程组的一组解DiffParam2用参数微分法中的中点积分法求非线性方程组的一组解mulFastDown用最速下降法求非线性方程组的一组解mulGSND用高斯牛顿法求非线性方程组的一组解mulConj用共轭梯度法求非线性方程组的一组解mulDamp用阻尼最小二乘法求非线性方程组的一组解第11章:解线性方程组的直接法SolveUpTriangle求上三角系数矩阵的线性方程组Ax=b的解GaussXQByOrder高斯顺序消去法求线性方程组Ax=b的解GaussXQLineMain高斯按列主元消去法求线性方程组Ax=b的解GaussXQAllMain高斯全主元消去法求线性方程组Ax=b的解GaussJordanXQ高斯-若当消去法求线性方程组Ax=b的解Crout克劳特分解法求线性方程组Ax=b的解Doolittle多利特勒分解法求线性方程组Ax=b的解SymPos1LL分解法求线性方程组Ax=b的解SymPos2LDL分解法求线性方程组Ax=b的解SymPos3改进的LDL分解法求线性方程组Ax=b的解followup追赶法求线性方程组Ax=b的解InvAddSide加边求逆法求线性方程组Ax=b的解Yesf叶尔索夫求逆法求线性方程组Ax=b的解qrxqQR分解法求线性方程组Ax=b的解第12章:解线性方程组的迭代法rs里查森迭代法求线性方程组Ax=b的解crs里查森参数迭代法求线性方程组Ax=b的解grs里查森迭代法求线性方程组Ax=b的解jacobi雅可比迭代法求线性方程组Ax=b的解gauseidel高斯-赛德尔迭代法求线性方程组Ax=b的解SOR超松弛迭代法求线性方程组Ax=b的解SSOR对称逐次超松弛迭代法求线性方程组Ax=b的解JOR雅可比超松弛迭代法求线性方程组Ax=b的解twostep两步迭代法求线性方程组Ax=b的解fastdown最速下降法求线性方程组Ax=b的解conjgrad共轭梯度法求线性方程组Ax=b的解preconjgrad预处理共轭梯度法求线性方程组Ax=b的解BJ块雅克比迭代法求线性方程组Ax=b的解BGS块高斯-赛德尔迭代法求线性方程组Ax=b的解BSOR块逐次超松弛迭代法求线性方程组Ax=b的解第13章:随机数生成PFQZ用平方取中法产生随机数列MixMOD用混合同余法产生随机数列MulMOD1用乘同余法1产生随机数列MulMOD2用乘同余法2产生随机数列PrimeMOD用素数模同余法产生随机数列PowerDist产生指数分布的随机数列LaplaceDist产生拉普拉斯分布的随机数列RelayDist产生瑞利分布的随机数列CauthyDist产生柯西分布的随机数列AELDist产生爱尔朗分布的随机数列GaussDist产生正态分布的随机数列WBDist产生韦伯西分布的随机数列PoisonDist产生泊松分布的随机数列BenuliDist产生贝努里分布的随机数列BGDist产生贝努里-高斯分布的随机数列TwoDist产生二项式分布的随机数列第14章:特殊函数计算gamafun用逼近法计算伽玛函数的值lngama用Lanczos算法计算伽玛函数的自然对数值Beta用伽玛函数计算贝塔函数的值gamap用逼近法计算不完全伽玛函数的值betap用逼近法计算不完全贝塔函数的值bessel用逼近法计算伽玛函数的值bessel2用逼近法计算第二类整数阶贝塞尔函数值besselm用逼近法计算变型的第一类整数阶贝塞尔函数值besselm2用逼近法计算变型的第二类整数阶贝塞尔函数值ErrFunc用高斯积分计算误差函数值SIx用高斯积分计算正弦积分值CIx用高斯积分计算余弦积分值EIx用高斯积分计算指数积分值EIx2用逼近法计算指数积分值Ellipint1用高斯积分计算第一类椭圆积分值Ellipint2用高斯积分计算第二类椭圆积分值第15章:常微分方程的初值问题DEEuler用欧拉法求一阶常微分方程的数值解DEimpEuler用隐式欧拉法求一阶常微分方程的数值解DEModifEuler用改进欧拉法求一阶常微分方程的数值解DELGKT2_mid用中点法求一阶常微分方程的数值解DELGKT2_suen用休恩法求一阶常微分方程的数值解DELGKT3_suen用休恩三阶法求一阶常微分方程的数值解DELGKT3_kuta用库塔三阶法求一阶常微分方程的数值解DELGKT4_lungkuta用经典龙格-库塔法求一阶常微分方程的数值解DELGKT4_jer用基尔法求一阶常微分方程的数值解DELGKT4_qt用变形龙格-库塔法求一阶常微分方程的数值解DELSBRK用罗赛布诺克半隐式法求一阶常微分方程的数值解DEMS用默森单步法求一阶常微分方程的数值解DEMiren用米尔恩法求一阶常微分方程的数值解DEYDS用亚当斯法求一阶常微分方程的数值解DEYCJZ_mid用中点-梯形预测校正法求一阶常微分方程的数值解DEYCJZ_adms用阿达姆斯预测校正法求一阶常微分方程的数值解DEYCJZ_adms2用密伦预测校正法求一阶常微分方程的数值解DEYCJZ_yds用亚当斯预测校正法求一阶常微分方程的数值解DEYCJZ_myds用修正的亚当斯预测校正法求一阶常微分方程的数值解DEYCJZ_hm用汉明预测校正法求一阶常微分方程的数值解DEWT用外推法求一阶常微分方程的数值解DEWT_glg用格拉格外推法求一阶常微分方程的数值解第16章:偏微分方程的数值解法peEllip5用五点差分格式解拉普拉斯方程peEllip5m用工字型差分格式解拉普拉斯方程peHypbYF用迎风格式解对流方程peHypbLax用拉克斯-弗里德里希斯格式解对流方程peHypbLaxW用拉克斯-温德洛夫格式解对流方程peHypbBW用比姆-沃明格式解对流方程peHypbRich用Richtmyer多步格式解对流方程peHypbMLW用拉克斯-温德洛夫多步格式解对流方程peHypbMC用MacCormack多步格式解对流方程peHypb2LF用拉克斯-弗里德里希斯格式解二维对流方程的初值问题peHypb2FL用拉克斯-弗里德里希斯格式解二维对流方程的初值问题peParabExp用显式格式解扩散方程的初值问题peParabTD用跳点格式解扩散方程的初值问题peParabImp用隐式格式解扩散方程的初边值问题peParabKN用克拉克-尼科尔森格式解扩散方程的初边值问题peParabWegImp用加权隐式格式解扩散方程的初边值问题peDKExp用指数型格式解对流扩散方程的初值问题peDKSam用萨马尔斯基格式解对流扩散方程的初值问题第17章:数据统计和分析MultiLineReg用线性回归法估计一个因变量与多个自变量之间的线性关系PolyReg用多项式回归法估计一个因变量与一个自变量之间的多项式关系CompPoly2Reg用二次完全式回归法估计一个因变量与两个自变量之间的关系CollectAnaly用最短距离算法的系统聚类对样本进行聚类DistgshAnalysis用Fisher两类判别法对样本进行分类MainAnalysis对样本进行主成分分析
2025/1/7 19:17:40 113KB matlab 算法 常用程序
1
用C/C++语言实现如下函数:1. boollu(double*a,int*pivot,intn);矩阵的LU分解。
假设数组anxn在内存中按行优先次序存放。
此函数使用高斯列选主元消去法将其就地进行LU分解。
pivot为输出参数,pivot[0,n)中存放主元的位置排列。
函数成功时返回false,否则返回true。
2. boolguass(doubleconst*lu,intconst*p,double*b,intn);求线代数方程组的解设矩阵Lunxn为某个矩阵anxn的LU分解,在内存中按行优先次序存放。
p[0,n)为LU分解的主元排列。
b为方程组Ax=b的右端向量。
此函数计算方程组Ax=b的解,并将结果存放在数组b[0,n)中。
函数成功时返回false,否则返回true。
3. voidqr(double*a,double*d,intn);矩阵的QR分解假设数组anxn在内存中按行优先次序存放。
此函数使用HouseHolder变换将其就地进行QR分解。
d为输出参数,d[0,n)中存放QR分解的上三角对角线元素。
4. boolhouseholder(doubleconst*qr,doubleconst*d,double*b,intn);求线代数方程组的解设矩阵qrnxn为某个矩阵anxn的QR分解,在内存中按行优先次序存放。
d[0,n)为QR分解的上三角对角线元素。
b为方程组Ax=b的右端向量。
函数计算方程组Ax=b的解,并将结果存放在数组b[0,n)中。
函数成功时返回false,否则返回true。
1
用cuda编写的LU分解解线性方程组问题
2024/12/1 7:55:02 3KB LU分解 解线性方程 cuda代码
1
本书在第1版广泛应用的基础上,吸收众多读者的宝贵建议进行改版,大幅完善了图书内容,以MATLABR2017b版软件为平台,注重实际应用,通过大量实例,结合科学计算中的重要问题,从MATLAB的入门知识开始,详细讲解MATLAB图形处理及图形用户界面,Simulink动态系统仿真,线性方程组求解,非线性方程(组)求解,矩阵特征值求解、优化、统计,微分方程数值解,有限元方法编程等,并在每章中都有非常丰富的综合实例。
2024/12/1 0:26:51 980KB MATLAB R2017 入门知识 Simulink
1
实现任意多个变量以最小二乘法拟合成的新线性方程,通过变量带入线性方程可求得任意的拟合值。
文件首行为行号、列号,其余行为数据行。
2024/11/16 15:51:55 5KB 多元线性回归
1
北航数值分析上机编程题第三题,分片二次差值,曲面拟合,Newton迭代法求解非线性方程组的解
1
用于求解线性和非线性代数方程组和常微分方程组,也可以进行数据拟合
2024/10/29 20:16:31 15.07MB 数学
1
关于非线性方程(组)的数值解法的程序,配有例题说明,非常方便使用。
2024/10/4 14:25:10 510KB mtatlab 非线性方程 数值解法
1
用C#实现的解线性方程组,程序用到Gauss消元法,动态添加文本框控件,并生成文本框矩阵(在此感谢CSDN网友帮我解决动态添加文本框控件这个问题)。
一起上传的还有一张Gauss消元算法的PPT
1
共 107 条记录 首页 上一页 下一页 尾页
在日常工作中,钉钉打卡成了我生活中不可或缺的一部分。然而,有时候这个看似简单的任务却给我带来了不少烦恼。 每天早晚,我总是得牢记打开钉钉应用,点击"工作台",再找到"考勤打卡"进行签到。有时候因为工作忙碌,会忘记打卡,导致考勤异常,影响当月的工作评价。而且,由于我使用的是苹果手机,有时候系统更新后,钉钉的某些功能会出现异常,使得打卡变得更加麻烦。 另外,我的家人使用的是安卓手机,他们也经常抱怨钉钉打卡的繁琐。尤其是对于那些不太熟悉手机操作的长辈来说,每次打卡都是一次挑战。他们总是担心自己会操作失误,导致打卡失败。 为了解决这些烦恼,我开始思考是否可以通过编写一个全自动化脚本来实现钉钉打卡。经过一段时间的摸索和学习,我终于成功编写出了一个适用于苹果和安卓系统的钉钉打卡脚本。
2024-04-09 15:03 15KB 钉钉 钉钉打卡