主要介绍了C++11原子类型与原子操作的相关资料,帮助大家更好的理解和学习c++,感兴趣的朋友可以了解下
2025/4/2 0:04:03 73KB c++11 原子类型 c++11 原子操作
1
LINGO是用来求解线性和非线性优化问题的简易工具。
LINGO内置了一种建立最优化模型的语言,可以简便地表达大规模问题,利用LINGO高效的求解器可快速求解并分析结果。
§1LINGO快速入门当你在windows下开始运行LINGO系统时,会得到类似下面的一个窗口:外层是主框架窗口,包含了所有菜单命令和工具条,其它所有的窗口将被包含在主窗口之下。
在主窗口内的标题为LINGOModel–LINGO1的窗口是LINGO的默认模型窗口,建立的模型都都要在该窗口内编码实现。
下面举两个例子。
例1.1如何在LINGO中求解如下的LP问题:在模型窗口中输入如下代码:min=2*x1+3*x2;x1+x2>=350;x1>=100;2*x1+x2<=600;然后点击工具条上的按钮即可。
例1.2使用LINGO软件计算6个发点8个收点的最小费用运输问题。
产销单位运价如下表。
单位销地运价产地 B1 B2 B3 B4 B5 B6 B7 B8 产量A1 6 2 6 7 4 2 5 9 60A2 4 9 5 3 8 5 8 2 55A3 5 2 1 9 7 4 3 3 51A4 7 6 7 3 9 2 7 1 43A5 2 3 9 5 7 2 6 5 41A6 5 5 2 2 8 1 4 3 52销量 35 37 22 32 41 32 43 38 使用LINGO软件,编制程序如下:model:!6发点8收点运输问题;sets:warehouses/wh1..wh6/:capacity;vendors/v1..v8/:demand;links(warehouses,vendors):cost,volume;endsets!目标函数;min=@sum(links:cost*volume);!需求约束;@for(vendors(J):@sum(warehouses(I):volume(I,J))=demand(J));!产量约束;@for(warehouses(I):@sum(vendors(J):volume(I,J))<=capacity(I));!这里是数据;data:capacity=605551434152;demand=3537223241324338;cost=626742954953858252197433767392712395726555228143;enddataend然后点击工具条上的按钮即可。
为了能够使用LINGO的强大功能,接着第二节的学习吧。
§2LINGO中的集对实际问题建模的时候,总会遇到一群或多群相联系的对象,比如工厂、消费者群体、交通工具和雇工等等。
LINGO允许把这些相联系的对象聚合成集(sets)。
一旦把对象聚合成集,就可以利用集来最大限度的发挥LINGO建模语言的优势。
现在我们将深入介绍如何创建集,并用数据初始化集的属性。
学完本节后,你对基于建模技术的集如何引入模型会有一个基本的理解。
2.1为什么使用集集是LINGO建模语言的基础,是程序设计最强有力的基本构件。
借助于集,能够用一个单一的、长的、简明的复合公式表示一系列相似的约束,从而可以快速方便地表达规模较大的模型。
2.2什么是集集是一群相联系的对象,这些对象也称为集的成员。
一个集可能是一系列产品、卡车或雇员。
每个集成员可能有一个或多个与之有关联的特征,我们把这些特征称为属性。
属性值可以预先给定,也可以是未知的,有待于LINGO求解。
例如,产品集中的每个产品可以有一个价格属性;
卡车集中的每辆卡车可以有一个牵引力属性;
雇员集中的每位雇员可以有一个薪水属性,也可以有一个生日属性等等。
LINGO有两种类型的集:原始集(primitive set)和派生集(derivedset)。
一个原始集是由一些最基本的对象组成的。
一个派生集是用一个或多个其它集来定义的,也就是说,它的成员来自于其它已存在的集。
2.3模型的集部分集部分是LINGO模型的一个可选部分。
在LINGO模型中使用集之前,必须在集部分事先定义。
集部分以关键字“sets:”开始,以“endsets”结束。
一个模型可以没有集部分,或有一个简单的集部分,或有多个集部分。
一个集部分可以放置于模型的任何地方,但是一个集及其属性
1
内容概要:本文详细探讨了遗传算法(GA)在笔状阵列天线优化中的应用与实现。
笔状阵列天线优化是一个复杂的多目标优化问题,涉及天线增益、方向图性能等指标。
遗传算法作为一种模拟自然选择和遗传机制的优化方法,适用于解决这类高维、非线性问题。
文中介绍了遗传算法的基本原理、流程,并给出了MATLAB源代码和运行步骤。
实验结果显示,遗传算法能有效优化笔状阵列天线的性能,提高了天线的设计质量。
适合人群:天线设计和信号处理领域的研究人员、工程师以及高校相关专业的学生。
使用场景及目标:本文适用于需要对笔状阵列天线进行优化设计的场景,旨在通过遗传算法寻找最佳天线参数配置,提高天线的整体性能。
其他说明:遗传算法不仅可以在单目标优化中发挥重要作用,还可在多目标优化、约束优化等问题中进一步应用和发展。
此外,该方法也可扩展应用于其他类型的天线设计,如三维阵列天线、共形阵列天线等。
1
2021.2.19日各国卫星参数资源含卫星名称、TLE、国家、目的等两个文件类型:TXT,Excel
2025/4/1 2:01:52 801KB 卫星参数
1
公开整理的“分区表数据集(2024-2025年)”是一份涵盖特定时间段内的详细分区数据资料。
这份数据集可能包含了不同区域、不同类型的分区信息,比如城市的行政区划、商业区划分,或者是根据特定标准(如人口、经济活动等)划分的区域数据。
该数据集的来源、规模、详细程度以及其数据字段的丰富性都将为相关研究或分析提供宝贵的信息。
由于数据集的范围是2024年至2025年,这意味着数据集将包含对未来区域规划、发展动态、以及可能的政策变化的预测和规划数据。
因此,它对于规划师、政策制定者、市场分析师、地产开发商等利益相关者都具有极高的价值。
通过这份数据集,他们能够洞察未来的趋势,从而作出更为明智的决策。
样例数据的链接提供了一个访问点,可以进一步了解数据集的具体内容和结构。
通过访问提供的链接,用户可以查看分区表数据集的具体格式、数据字段、以及数据的详细样例。
这有助于用户对数据集有一个直观的认识,并评估这份数据是否满足他们的需求。
由于这份数据集被标记为“数据集”,这意味着它是一份结构化或半结构化的数据集合,用于分析、统计、或机器学习等目的。
它可能包括各类区域的统计数据、地理信息系统(GIS)数据、面积、人口统计信息、以及可能的经济指标等。
此类型的数据集通常需要通过专门的数据分析工具或软件进行处理和分析,以便从中提取有用的信息。
在处理这类数据集时,需要考虑数据的完整性、准确性以及时效性。
完整性确保数据覆盖了所有相关的分区和字段,准确性则保证数据的每一个条目都是正确无误的,时效性保证数据反映了最新的区域信息。
此外,用户也需要关注数据的隐私和安全性问题,尤其是在处理可能涉及敏感信息的分区数据时。
这份数据集的提供者可能是政府机关、研究机构或私营公司。
他们可能出于研究目的、政策制定、市场分析等不同的动机进行了数据的搜集和整理工作。
无论来源如何,这份数据集都可能经过了严格的筛选和清洗过程,以确保数据的质量和可用性。
对于准备使用这份数据集的用户来说,理解数据集的背景、目的、以及如何解读数据集中的信息是非常关键的。
这通常需要具备一定的专业知识,比如地理学、统计学、数据科学等领域的知识,来确保分析结果的科学性和准确性。
公开整理的“分区表数据集(2024-2025年)”是一份包含未来期间区域划分详细信息的数据集合,它为各种应用场景提供了宝贵的数据支持。
通过理解其结构和内容,用户可以深入挖掘数据背后的潜在价值,为决策提供坚实的数据基础。
这份数据集对于需要进行区域分析的研究者和决策者来说,无疑是一份重要的资源。
2025/3/31 20:19:02 1.8MB 数据集
1
第1章绪论第2章SAR成像原理2.1引言2.2SAR系统参数2.3单脉冲距离向处理2.4线性调频脉冲与脉冲压缩2.5SAR方位向处理2.6SAR线性测量系统2.7辐射定标2.8小结参考文献附录2A星载SAR的方位向处理第3章图像缺陷及其校正3.1引言3.2SAR成像散焦3.2.1自聚焦方法3.2.2自聚焦技术的精确性3.2.3散射体性质对自聚焦的影响3.3几何失真与辐射失真3.3.1物理原因及关联的失真3.3.2基于信号的MOCO方法3.3.3天线稳定性3.4残留SAR成像误差3.4.1残留的几何与辐射失真3.4.2旁瓣水平3.5基于信号的MOCO方法的改进3.5.1包含相位补偿的迭代自聚焦3.5.2较小失真的高频跟踪3.5.3常规方法与基于信号方法相结合的MOC0方法3.6小结参考文献第4章SAR图像的基本特性4.1引言4.2SAR图像信息的特质4.3单通道图像类型与相干斑4.4多视处理估计RCS4.5相干斑的乘性噪声模型4.6RCS估计——成像与噪声的影响4.7SAR成像模型的结果4.8空间相关性对多视处理的影响4.9系统引入空间相关性的补偿4.9.1子采样4.9.2预平均4.9.3插值4.10空间相关性估计:平稳性与空间平均4.11相干斑模型的局限性4.12多维SAR图像4.13小结参考文献第5章数据模型5.1引言5.2数据特征5.3经验数据分布5.4乘积模型5.4.1RCS模型5.4.2强度概率密度函数5.5概率分布模型的比较5.6基于有限分辨率成像的目标RCS起伏5.7数据模型的局限性5.8计算机仿真5.9小结参考文献第6章RCS重建滤波器6.1引言6.2相干斑模型和图像质量度量6.3贝叶斯重建6.4基于相干斑模型的重建6.4.1多视处理相干斑抑制6.4.2最小均方误差相干斑抑制……第7章RCS分类与分割第8章纹理信息提取第9章相关纹理第10章目标信息第11章多通道SAR数据的信息处理第12章多维SAR图像分析技术第13章SAR图像的分类第14章现状与前景分析
2025/3/28 18:57:23 36.01MB 合成孔径雷达 SAR雷达成像
1
1.虚函数是可以[New一个对象的时候要根据虚函数的函数体来填虚表;
而内联函数没有函数体,只是在预编译阶段展开]内联的,这样就可以减少函数调用的开销,提高效率(错误)2.一个类里可以同时存在[同一个类里无论什么函数都不能函数名和参数完全一样]参数和函数名都相同的虚函数与静态函数(错误)3.父类的析构函数是非虚的,但是子类的析构函数是虚的,delete子类指针(指向该子类对象)[特殊情况,参见题5],会调用父类的析构函数(正确)//任何情况下删除子类都会调用到父类的析构函数4.对于下面的类CA,sizeof(CA)=_B_:A.4B.8C.12D.16classCA{public:CA();virtual~CA();//因为有虚函数,所以会有4个字节的虚表指针private:intm_iTime;//成员变量4个字节public:intGetTime();intSetTime(intiTime);};5.下面这段程序,打印结果是_A_:A.1B.2C.3D.以上都不对intg_iCount=0;classCParent{public:CParent(){}~CParent(){g_iCount+=1;}};classCSon:publicCParent{public:CSon(){}~CSon(){g_iCount+=2;}};main(){CParent*p=newCSon();deletep[由于p被声明成父类指针,并且父类和子类的析构函数都非虚,因此delete操作只能根据p指针声明的类型来调用父类的析构函数];std::coutPrint();[由于父类和子类的Print函数都非虚,所以根据指针类型决定调用关系]}8.请问下面这段程序的输出结果是_C_:A.2,1,B.2,2,C.1,2,D.1,1,classCP
2025/3/28 16:17:55 392KB 华为 C++ 笔试题
1
(1)坐标形式转换,BLH与XYZ的互换,高斯投影正反算与邻带换算等。
(2)大地问题解算。
正反算,支持贝塞尔方法、高斯平均引数方法和韦森特方法。
(3)参考椭球变换。
椭球变换与椭球变换参数的求取。
(4)参考框架变换。
历元变换、速度变换、坐标变换、历元速度坐标变换等。
(5)平差计算。
水准网平差、三角高程网平差、GPS网平差。
(6)IGS观测数据与精密星历下载。
(7)GNSS观测数据质量检查(支持GPS和GLONASS,支持总览图绘制和按星绘图)。
(8)RTK定位结果精度分析(可应用于单点多历元各类XYZ坐标类型的点位精度分析)。
(8)GNSS水准高程拟合。
移动曲面法(含平面、二次曲面、加权平均法)、整体拟合法(平面、二次曲面、三次曲面)。
(9)时间变换。
历书时、儒略日、GPS时、年积日等之间的转换。
(10)图幅编号计算。
新旧图幅编号计算与范围计算,地形图图幅编码计算。
2025/3/27 4:49:42 11.32MB 大地测量 计算工具集
1
NetworkFlows-Theory,Algorithms,AndApplications(第六部分)网络流:理论、算法与应用英文版网络流的经典书籍,已经绝版,在所有网站都买不到了,很艰难才找到的!请各位爱好者支持下!文件类型为djvu,请自己在windows下搜索安装WinDjView即可!
2025/3/26 15:13:11 3.24MB 网络流 NetworkFlows Theory Algorithms
1
本文主要论叙校园局域网的组建和配置,从网络规划的总体结构来看,总共分为五大模块:校园网络需求分、校园网络设备配置、校园网服务器配置、校园网络的管理和安全,设计心得和总结。
其中需求分析又分为学校现状分析、学校信息点分布需求分析、学校子网划分、学校VLAN划分、校园网布线工程分析等五部分具体而详尽的概述了学校分析,在对校园网络硬件设配选择和配置中,规划了学校校园网的结构拓扑图,交换机的数量和类型。
其中具体描绘了校园网的网络拓扑图,交换机的选择和配置主要讲述了核心交换机、汇聚层交换机、接入层交换机和路由器、防火墙的说明和配置。
再配置校园网络的服务器包括邮件服务器、www服务器、FTP服务器、DNS服务器、数据库服务器和代理服务器等。
最后简要的说明了校园网络的管理和安全等具体方面的内容。
论证了,学校信息点的需求、学校子网的划分和布线工程的分析,进而选用校园网的硬件和硬件的配置,常用服务器的设置,网络管理和安全。
最后一个大型的稳定可靠的校园局域网呈现在我们面前。
2025/3/26 3:20:44 2.16MB 校园网 毕业设计 管理 安全
1
共 1000 条记录 首页 上一页 下一页 尾页
在日常工作中,钉钉打卡成了我生活中不可或缺的一部分。然而,有时候这个看似简单的任务却给我带来了不少烦恼。 每天早晚,我总是得牢记打开钉钉应用,点击"工作台",再找到"考勤打卡"进行签到。有时候因为工作忙碌,会忘记打卡,导致考勤异常,影响当月的工作评价。而且,由于我使用的是苹果手机,有时候系统更新后,钉钉的某些功能会出现异常,使得打卡变得更加麻烦。 另外,我的家人使用的是安卓手机,他们也经常抱怨钉钉打卡的繁琐。尤其是对于那些不太熟悉手机操作的长辈来说,每次打卡都是一次挑战。他们总是担心自己会操作失误,导致打卡失败。 为了解决这些烦恼,我开始思考是否可以通过编写一个全自动化脚本来实现钉钉打卡。经过一段时间的摸索和学习,我终于成功编写出了一个适用于苹果和安卓系统的钉钉打卡脚本。
2024-04-09 15:03 15KB 钉钉 钉钉打卡