模型保证能跑,准确。
搭建ieee第一标准模型所需要的风机模型,可以用于次同步振荡的研究,也可以用于系统稳定性分析的研究及其他相关研究。
2025/2/22 16:17:19 72KB PSCAD DFIG
1
反演控制方法与实现《反演控制方法与实现》系统地介绍了反演控制方法的基本原理及其在不确定非线性系统中的应用。
《反演控制方法与实现》共分为6章,在介绍反演法的一般理论的基础上,重点论述了抑制参数漂移的自适应反演方法,考虑非线性干扰观测器的弱抖振滑模反演方法,针对系统模型部分未知的情况,使用模糊系统和神经网络估计系统中的未知部分,给出了基于智能系统的反演设计方法,同时本书介绍了系统状态未知情况下的反演设计方法。
针对各种情况本书均给出了详细的理论设计方法和Matlab仿真。
 《反演控制方法与实现》是作者在从事控制理论与控制方法研究的基础上完成的。
本书适用于从事非线性控制方法研究的工作人员和研究生参考。
前言第1章绪论1·1研究的背景及意义1·2李雅普诺夫稳定性理论1·2·1李雅普诺夫意义下的稳定性1·2·2有界性1·2·3李雅普诺夫稳定性理论1·3微分几何理论基础1·3·1李导数和李括号1·3·2微分同胚1·3·3控制系统的相对阶1·3·4输入状态线性化1·3·5状态反馈线性化的设计1·4反演法的基本原理1·5反演法的研究概况1·5·1自适应反演控制1·5·2鲁棒自适应反演控制1·5·3滑模反演控制1·5·4智能反演控制1·5·5其他反演控制方法1·6本书的主要研究内容第2章自适应反演控制方法2·1引言2·2常规自适应反演法2·2·1自适应反演法设计思路2·2·2仿真算例2·3抑制参数漂移的自适应反演控制2·3·1问题描述及预备知识2·3·2抑制参数漂移的自适应反演控制器设计2·3·3系统稳定性分析2·3·4仿真算例2·4扩展的自适应反演控制2·4·1问题描述2·4·2参数自适应律的设计2·4·3基于动态面的扩展反演控制器设计2·4·4稳定性分析2·4·5仿真算例2·5仿真算例的Matlab实现2·5·1节仿真算例的Matlab实现2·5·2节仿真算例的Matlab实现2·5·3节仿真算例的Matlab实现2·6本章小结第3章不确定非线性系统的弱抖振滑模反演控制3·1引言3·2滑模控制基本原理3·3匹配不确定非线性系统的弱抖振滑模反演控制3·3·1问题描述3·3·2滑模反演控制器设计3·3·3滑模反演控制稳定性分析3·3·4自适应滑模反演控制器设计3·3·5自适应滑模反演控制稳定性分析3·3·6非线性干扰观测器3·3·7匹配不确定非线性系统的弱抖振滑模反演控制3·3·8仿真算例3·4非匹配不确定非线性系统的多滑模反演控制3·4·1问题描述3·4·2多滑模反演控制3·4·3基于非线性干扰观测器的多滑模反演控制3·4·4系统稳定性分析3·4·5仿真算例3·5仿真算例的Matlab实现3·5·1节弱抖振滑模反演控制的Matlab实现3·5·2节自适应弱抖振滑模反演控制Matlab实现3·5·3节多滑模反演控制Matlab实现3·6本章小结第4章基于模糊系统的非线性系统反演控制4·1引言4·2基于模糊系统的非线性系统控制4·2·1问题的提出4·2·2模糊系统描述4·2·3控制器设计4·2·4仿真算例4·3节Matlab实现4·4本章小结第5章基于神经网络的非线性系统反演控制5·1引言5·2非线性系统的鲁棒小波神经网络控制5·2·1问题的提出5·2·2小波神经网络结构5·2·3控制器的设计5·2·4稳定性分析5·2·5仿真5·3不确定非线性系统的鲁棒自适应渐近跟踪控制5·3·1控制目标5·3·2控制器设计5·3·3仿真算例5·4算例的Matlab实现5·4·1节算例的Matlab实现5·4·2节算例1的Matlab实现5·4·3节算例2的Matlab实现5·5本章小结第6章基于状态观测器的反演控制器设计6·1滑模观测器控制器设计6·1·1滑模观测器设计6·1·2滑模反演控制器设计6·2仿真算例6·3节仿真实例的Matlab实现6·4本章小结参考文献
2025/1/11 13:03:55 49.9MB 反演控制 backstepping
1
《自适应控制》是一本专注于自适应控制系统理论、设计方法与实际应用的专业书籍。
自适应控制理论是一种工程控制理论,它通过让控制系统根据外部环境和内部状态的变化自动调整控制策略,以适应这些变化,达到提高控制性能的目的。
自适应控制系统通常具有以下几个主要特点:1.自适应能力:自适应控制系统能够检测系统性能的变化,并根据这些变化自动调整控制器参数,使得系统性能保持在最佳或者可接受的水平。
2.工程控制理论:自适应控制理论结合了经典控制理论与现代控制理论的优点,能够处理各种复杂和不确定的情况。
3.设计方法:自适应控制设计涉及理论分析与算法设计。
理论分析包括系统建模、稳定性分析等;
算法设计则包括自适应律的构造、参数估计、控制策略的制定等。
4.应用实例:书中将包含一系列自适应控制系统的应用实例,如工业过程控制、飞行器控制、机器人控制等,通过这些实例可以展示自适应控制技术的实际应用效果和价值。
书中内容涵盖以下主题:1.自适应控制系统简介:介绍自适应控制的基本概念、应用背景和研究动机。
2.实时参数估计:讨论在动态系统中实时估计参数的方法,如最小二乘法和回归模型的应用。
3.确定性自调谐调节器:探讨基于确定性模型的自调谐调节器设计,包括极点配置设计、间接和直接自调谐调节器的设计。
4.随机与预测性自调谐调节器:阐述如何设计基于随机模型和预测模型的自调谐调节器,如最小方差和滑动平均控制器的设计。
5.模型参考自适应系统(MRAS):介绍MRAS的设计原理和方法,以及如何应用Lyapunov理论和稳定性分析来保证自适应控制系统的稳定性。
6.自适应系统的属性:分析自适应系统的非线性动态特性和稳定性问题,以及间接离散时间自调谐调节器的分析方法。
7.随机自适应控制:研究自适应控制在随机环境中的应用,例如多步决策问题和双重控制策略的设计。
在自适应控制系统中,模型参考自适应系统(MRAS)和自适应控制系统(STR)是两种重要的体系结构。
MRAS通过比较系统输出与参考模型的输出来调整控制器参数,而STR则直接根据系统性能来调整参数。
这两种体系结构在实际应用中各有优势,可以根据不同应用场景和性能要求灵活选用。
在自适应控制系统的设计与应用中,工程师和研究人员需要对系统的稳定性进行深入分析。
稳定性分析能够确保系统在受到干扰或参数变化时仍能保持良好的控制性能。
其中,Lyapunov稳定性理论是自适应控制系统稳定性分析的重要工具之一。
此外,实际工程应用中,系统可能面临各种不确定性和干扰,自适应控制系统需要具备一定的鲁棒性来应对这些挑战。
鲁棒自适应控制是设计自适应控制系统时需要考虑的重要方面。
书中还会介绍一些自适应控制系统的扩展应用,例如在非线性系统中的应用,以及自适应控制与其他控制策略如预测控制的结合。
《自适应控制》是一本全面介绍自适应控制理论、设计方法和实际应用的专业书籍,旨在为自动化、计算机科学与技术及相关专业的学生和专业技术人员提供深入的学习资源。
通过本书,读者可以系统地学习自适应控制的相关知识,并了解其在现代工程技术中的重要作用。
2024/9/30 8:54:46 11.5MB adaptive control
1
系统辨识与自适应控制是控制理论中的两个关键领域,它们在自动化、机器人技术、航空航天、过程控制等众多IT行业中有着广泛的应用。
本压缩包文件包含的资源可能是一系列关于这两个主题的编程代码实例,旨在帮助学习者理解和实践相关算法。
系统辨识是通过收集系统输入和输出数据来构建数学模型的过程,这些模型可以描述系统的动态行为。
在实际应用中,系统辨识通常涉及时间序列分析、最小二乘法、状态空间模型以及参数估计等技术。
通过对系统进行建模,我们可以预测系统响应、优化性能或诊断故障。
例如,对于一个工业生产线,系统辨识可以帮助我们理解机器的运行特性,以便于提高生产效率或预防设备故障。
自适应控制则是控制理论的一个分支,它允许控制器根据系统的未知或变化特性自动调整其参数。
在自适应控制中,关键概念包括自适应律、参数更新规则和不确定性估计。
自适应控制器的设计通常包括两个部分:一是固定结构的控制器,用于处理已知的系统特性;
二是自适应机制,用于处理未知或变化的部分。
例如,在自动驾驶汽车中,自适应控制系统能够实时调整车辆的行驶策略以应对路面条件的变化或驾驶环境的不确定性。
这个压缩包可能包含以下内容:1.**源代码**:可能包含用各种编程语言(如Python、Matlab、C++等)实现的系统辨识和自适应控制算法,例如最小二乘法估计、卡尔曼滤波器、自适应PID控制器等。
2.**数据集**:可能提供了实验数据或模拟数据,用于测试和验证识别算法和自适应控制器的效果。
3.**教程文档**:可能包括详细的步骤说明,解释如何运行代码、解读结果以及如何将理论知识应用于实际问题。
4.**示例问题**:可能涵盖各种工程问题,如机械臂控制、过程控制系统的稳定性分析等,以帮助学习者深入理解这两个领域的应用。
通过学习和实践这些代码,学习者不仅可以掌握系统辨识和自适应控制的基本理论,还能提升编程和解决实际问题的能力。
在IT行业中,这样的技能对于从事控制系统的开发和优化工作至关重要,无论是物联网(IoT)设备、智能机器人还是复杂的自动化生产线,都需要这样的技术来确保系统的高效、稳定运行。
2024/9/30 8:52:27 1.15MB 系统辨识
1
BP神经网络稳定性分析,写的还是可以的,可以作为参考,这方面的资料都很少,太难证明了,所以很珍贵的,哈哈哈哈,需要些这么多描述
2024/8/31 5:15:07 597KB 神经网络
1
论文,基于Matlab工具箱的电力系统小干扰稳定性分析,可以了把
2024/8/19 5:28:38 113KB MATLAB 小扰动分析
1
电机驱动系统+磁盘驱动读取系统基本要求:(1)针对自己的兴趣自选控制系统(如磁盘驱动系统、倒立摆、弹簧系统等)确定系统的典型参数,建立系统的数学模型(状态空间表达式);
(2)采用秩判据的方法判断系统的能控性和能观性;
(3)采用李雅普诺夫方法分析系统的状态稳定性、分析系统的输出稳定性(建议借助MATLAB进行分析,便于求出系统的极点位置)(4)设计系统的性能指标,对系统进行极点配置。
学生提交的大作业必须有包含基本要求,在完成基本要求的基础上,可以进行更加完善的设计。
在设计的过程中若使用MATLAB仿真软件,请附上程序代码。
2024/6/29 14:04:28 447KB 现代控制理论 matlab
1
XFLR5_v6.09.01多语中文版(机翼模拟分析工具)是一个在低雷诺数下翼型、机翼和飞机的分析工具。
它包括:使用XFoil作为求解器,直接和逆向分析能力,基于升力线法、涡格法和3D面元法的机翼设计和分析。
Xfoil是一个为设计和分析亚音速飞机独立翼型编写的互动式的程序,用于分析翼型(2D)和机翼、甚至整个飞机(3D)气动力的共享软件,它由MIT(麻省理工)航空航天系的Prof.MarkDrela和H.Youngren开发。
有友好用户界面的开源软件(使用Qt开发)。
http://www.xflr5.cn/basic_operations.htmlhttp://www.xflr5.cn/docs/XFLR5稳定性分析中文版.pdf
1
对于微分方程平衡点稳定性的分析,有助于对混沌系统微分方程组的平衡点的判断。
2024/2/11 23:29:06 188KB 平衡点 稳定性 微分方程
1
根据高超声速飞行器的欧拉近似离散模型,提出基于Back-stepping的模糊离散自适应控制器设计方法.结合模糊自适应控制和反馈线性化的方法,Back-stepping设计的每一步虚拟/实际控制量对系统非匹配的不确定性都能进行较好补偿.稳定性分析表明,该控制方法能够保证系统跟踪误差和模糊自适应参数误差是一致终值有界的.仿真使用了高超声速飞行器的纵向模型对算法进行了验证,得到了满意的控制效果.
1
共 27 条记录 首页 上一页 下一页 尾页
在日常工作中,钉钉打卡成了我生活中不可或缺的一部分。然而,有时候这个看似简单的任务却给我带来了不少烦恼。 每天早晚,我总是得牢记打开钉钉应用,点击"工作台",再找到"考勤打卡"进行签到。有时候因为工作忙碌,会忘记打卡,导致考勤异常,影响当月的工作评价。而且,由于我使用的是苹果手机,有时候系统更新后,钉钉的某些功能会出现异常,使得打卡变得更加麻烦。 另外,我的家人使用的是安卓手机,他们也经常抱怨钉钉打卡的繁琐。尤其是对于那些不太熟悉手机操作的长辈来说,每次打卡都是一次挑战。他们总是担心自己会操作失误,导致打卡失败。 为了解决这些烦恼,我开始思考是否可以通过编写一个全自动化脚本来实现钉钉打卡。经过一段时间的摸索和学习,我终于成功编写出了一个适用于苹果和安卓系统的钉钉打卡脚本。
2024-04-09 15:03 15KB 钉钉 钉钉打卡