包含CC3200、CC2530开发核心板AD软件的全部元器件封装库,除了芯片还有各个电阻电容等元器件封装。
2025/7/3 14:49:25 506KB CC3200CC2530
1
用STM32F407开发的一款示波器,以UCOSIII做操作系统,默认4.3寸电容屏显示(可修改)。
下侧数据框,可显示幅值、Vmax、Vmin、频率、period、占空比、V/div、T/div等参数。
右侧按钮控制框,具有Auto、Stop、cursor、time/div、V/div、Signal功能。
Signal可作为信号发生器,测试示波器波形显示。
2025/6/26 22:45:20 10.07MB STM32F407 示波器 信号发生器 正点原子
1
本教材介绍了五个方面的内容:MOS器件基本原理以及主要的特性,VLSI中逻辑结构的主要设计方法,用于VLSI系统的模拟集成单元设计方法,VLSI的测试问题与相关技术,VLSI设计系统及其组成。
涉及了五个方面的基础知识:MOS器件基础知识,半导体工艺基础知识,集成电路版图基础知识,逻辑、电路设计基础知识和CAD基础知识。
《VLSI设计基础》作为VLSI设计基础教材,注重相关理论的结论和知识的应用。
可作为本科生教材和研究生参考书。
第1章VLSI设计基础概述1.1VLSI设计技术基础与主流制造技术1.2VLSI设计方法与设计技术1.3新技术对VLSI的贡献1.4ASIC和VLSI1.5SOC1.6VLSI的版图结构和设计技术1.6.1VLSI的版图总体结构1.6.2VLSI版图的内部结构第2章MOS器件与工艺基础2.1MOS晶体管基础2.1.1MOS晶体管结构及基本工作原理2.1.2MOS晶体管的阈值电压VT2.1.3MOS晶体管的电流-电压方程2.1.4MOS晶体管的平方律转移特性2.1.5MOS晶体管的跨导gm2.1.6MOS晶体管的直流导通电阻2.1.7MOS晶体管的交流电阻2.1.8MOS晶体管的最高工作频率2.1.9MOS晶体管的衬底偏置效应2.1.10CMOS结构2.2CMOS逻辑部件2.2.1CMOS倒相器设计2.2.2CMOS与非门和或非门的结构及其等效倒相器设计方法2.2.3其他CMOS逻辑门2.2.4D触发器2.2.5内部信号的分布式驱动结构2.3MOS集成电路工艺基础2.3.1基本的集成电路加工工艺2.3.2CMOS工艺的主要流程2.3.3Bi-CMOS工艺技术第3章工艺与设计接口3.1工艺对设计的制约与工艺抽象3.1.1工艺对设计的制约3.1.2工艺抽象3.2设计规则3.2.1几何设计规则3.2.2电学设计规则3.2.3设计规则在VLSI设计中的应用第4章晶体管规则阵列设计技术4.1晶体管阵列及其逻辑设计应用4.1.1全NMOS结构ROM4.1.2ROM版图4.2MOS晶体管开关逻辑4.2.1开关逻辑4.2.2棒状图4.3PLA及其拓展结构4.3.1“与非-与非”阵列结构4.3.2“或非-或非”阵列结构4.3.3多级门阵列(MGA)4.4门阵列4.4.1门阵列单元4.4.2整体结构设计准则4.4.3门阵列在VLSI设计中的应用形式4.5晶体管规则阵列设计技术应用第5章单元库设计技术5.1单元库概念5.2标准单元设计技术5.2.1标准单元描述5.2.2标准单元库设计5.2.3输入、输出单元(I/OPAD)5.3积木块设计技术5.4单元库技术的拓展第6章微处理器6.1系统结构概述6.2微处理器单元设计6.2.1控制器单元6.2.2算术逻辑单元(ALU)6.2.3乘法器6.2.4移位器6.2.5寄存器6.2.6堆栈6.3存储器组织6.3.1存储器组织结构6.3.2行译码器结构6.3.3列选择电路结构第7章测试技术和可测试性设计7.1VLSI可测试性的重要性7.2测试基础7.2.1内部节点测试方法的测试思想7.2.2故障模型7.2.3可测试性分析7.2.4测试矢量生成7.3可测试性设计7.3.1分块测试7.3.2可测试性的改善设计7.3.3内建自测试技术7.3.4扫描测试技术第8章模拟单元与变换电路8.1模拟集成电路中的基本元件8.1.1电阻8.1.2电容8.2基本偏置电路8.2.1电流偏置电路8.2.2电压偏置电路8.3放大电路8.3.1单级倒相放大器8.3.2差分放大器8.3.3源极跟随器8.3.4MOS输出放大器8.4运算放大器8.4.1两级CMOS运放8.4.2CMOS共源-共栅(cascode)运放8.4.3带有推挽输出级的运放8.4.4采用衬底晶体管输出级的运放8.5电压比较器8.5.1电压比较器的电压传输特性8.5.2差分电压比较器8.5.3两级电压比较器8.6D/A、A/D变换电路8.6.1D/A变换电路8.6.2A/D变换电路8.
2025/6/24 15:01:24 12.57MB VLSI
1
完成对电阻电容的测量,已完成自动换档功能,代码完整
2025/6/18 7:03:04 2.95MB RLC测量
1
概述BS81x系列芯片具有2~16个触摸按键,可用来检测外部触摸按键上人手的触摸动作。
该系列的芯片具有较高的集成度,仅需极少的外部组件便可实现触摸按键的检测。
BS81x系列提供了串行及并行输出功能,可方便与外部MCU之间的通讯,实现设备安装及触摸引脚监测目的。
芯片内部采用特殊的集成电路,具有高电源电压抑制比,可减少按键检测错误的发生,此特性保证在不利环境条件的应用中芯片仍具有很高的可靠性。
此系列的触摸芯片具有自动校准功能,低待机电流,抗电压波动等特性,为各种触摸按键的应用提供了一种简单而又有效的实现方法。
2025/6/16 13:26:41 16.93MB 单片机 触摸按键 stm8
1

去耦网络的功能是保证工作电源的稳定和消除电源系统出现的瞬间干扰电压(峰一峰值),因此设计理想的去耦网络是系统可靠工作的保证。
去耦网络通常是由一系列的电容器构成。
  FPGA器件的VCCO、VCCINT、VCCAUX及VREF工作电源的精度通常为±5%,尽管这个参数是一个静态参数,实际上包括了设备工作环境中可能会出现的电源波动。
因此,器件对电源波动带来的峰一峰值只能在10%之内。
目前,所使用的电源模块基本上都具有自动调节功能。
对电压的波动可以进行一些微调,但对于瞬间的干扰却无能为力。
而并联在电源系统中的去耦网络,由于存储了一部分的电能,可以有效地补偿电源网络中的部分功率需求。
这就是增加去耦网
2025/6/15 22:25:44 32KB
1
ATK-7'TFTLCD电容触摸屏模块
2025/6/12 4:19:40 15.39MB LCD电容触摸
1
数字万用表是电子技术工作中常用的测量工具,它能够测量电压、电流、电阻等参数,并具备测量二极管、通断检测、电容测量等功能。
本教材旨在为初学者提供一个清晰的数字万用表使用入门指南,借助彩色插图,详细地介绍万用表的各个按键和接口的功能和操作方法。
使用数字万用表前必须先阅读档位,即选择合适的量程。
量程选择不当可能会导致测量误差或者损坏万用表。
测量完成后,应将量程调至最大档位或“OFF”位置,这称为拨空档,以防下次使用时误操作或突然接入大电流损坏表头。
读数时万用表应保持水平,以确保读数的准确性。
在测量电阻(R)、电容(C)或电流(I)之前,应先将万用表的指针调零,这有助于提高测量的准确性。
在切换不同的测量功能或量程时,也要注意重新调零。
关于极性和连接方式,万用表内部的黑色探头应该连接到测量点的负极或“+”端子。
测量电流时,需要将万用表串联在电路中;
测量电压时,则需要将万用表并联在被测电路两端。
在进行测量时,应避免极性接反,这会直接影响测量结果,并有可能损坏万用表。
数字万用表的测量项目包括:1.交流电压和直流电压:通过选择万用表上的电压测量功能,并设置适当的量程,可以测量电路中的交流或直流电压。
2.测量通断:在测量电路的导通性时,万用表可以发出声音或显示读数,以判断电路连接是否良好。
3.二极管测量:万用表设有专门的二极管测量档位,可以测量二极管的正向和反向电阻,从而判断二极管的好坏。
4.电阻测量:通过选择电阻测量档位,并将万用表的两个探针接到电阻两端,万用表可以测出电阻的阻值。
测量电阻时一定要先调零,且不带电测量,以免损坏万用表。
5.电容测量:万用表的某些型号有测量电容的功能。
需要将电容器的两极断开电路后进行测量,以避免电路中其他元件对测量结果的干扰。
6.电流测量:测量电流时,万用表需要串联在电路中。
在进行测量之前,应注意表笔的正负极,因为电流测量涉及到电荷流动的方向。
7.三极管测量:万用表可以辅助判断三极管的工作状态,比如是否工作在放大区,但更深入的测试可能需要专用的测试设备。
本教材的编排以图解为主,结合了使用提示和经验技巧,让初学者可以快速上手,逐步掌握数字万用表的各种功能和正确的测量方法。
通过掌握这些知识点,初学者可以有效地使用数字万用表进行各种电气参数的测量,为电子设备的维护、故障排查和电路设计提供重要支持。
2025/5/27 22:00:51 685KB 数字万用表使用 如何使用万用表
1
多年收集并整理所得,个人专用,包含绝大部分的常用IC,各种单片机,DSP,ARM等,还有各种二极管,电阻,电容,电感,三极管,mofect,场效应管及可控硅,传感器,存储器,电池电源,开关,继电器,感应元件,光电元件,接插件,数字集成电路,及各种常用器件的封装。
2025/5/23 22:19:29 36.63MB altium designer AD 最全封装库
1
最简单的外围硬件的电容触摸感应解决方案,希望能对大家有点启发
2025/5/21 18:43:16 354KB 电容触摸感应
1
共 276 条记录 首页 上一页 下一页 尾页
在日常工作中,钉钉打卡成了我生活中不可或缺的一部分。然而,有时候这个看似简单的任务却给我带来了不少烦恼。 每天早晚,我总是得牢记打开钉钉应用,点击"工作台",再找到"考勤打卡"进行签到。有时候因为工作忙碌,会忘记打卡,导致考勤异常,影响当月的工作评价。而且,由于我使用的是苹果手机,有时候系统更新后,钉钉的某些功能会出现异常,使得打卡变得更加麻烦。 另外,我的家人使用的是安卓手机,他们也经常抱怨钉钉打卡的繁琐。尤其是对于那些不太熟悉手机操作的长辈来说,每次打卡都是一次挑战。他们总是担心自己会操作失误,导致打卡失败。 为了解决这些烦恼,我开始思考是否可以通过编写一个全自动化脚本来实现钉钉打卡。经过一段时间的摸索和学习,我终于成功编写出了一个适用于苹果和安卓系统的钉钉打卡脚本。
2024-04-09 15:03 15KB 钉钉 钉钉打卡