本资源有一个matlab程序段,是仿真BPSK分别在高斯噪声和瑞利衰落下的误码率,产生图形对仿真值和理论值进行比较
2024/9/23 17:46:56 838B BPSK
1
信道的matlab仿真,主要是瑞利信道的仿真,提供了详细的说明
2024/9/20 14:50:49 314KB 信道仿真
1
在遥感图像的众多分割方法中,高斯混合模型(GMM)是一种常用的图像建模方法。
提出了高斯-瑞利混合模型(GRMM)可能更适合对遥感图像建模。
介绍了传统高斯混合模型和高斯-瑞利混合模型的区别。
比较了这两种混合模型对图像建模的结果,并用数据说明高斯-瑞利混合模型拟合图像的像素分布误差更小。
采用最大熵方法确定图像的最佳分类数,采用马尔可夫随机场(MRF)方法及新的势能函数完成图像的分割,采用迭代条件模型(ICM)完成分割过程中的最大后验概率计算问题。
在实验中采用了3幅遥感图像,实验过程中比较了各个图像运用高斯混合模型和高斯-瑞利混合模型的分割和拟合结果,分别通过数据和分割结果体现了该分割方法的效果。
2024/9/16 15:29:46 5.33MB 图像处理 遥感图像 高斯-瑞利 最大熵
1
固定放大转发协议的MATLAB实现。
协作通信,单中继,瑞利信道,使用2PSK编码,固定放大转发协议,MATLAB仿真。
2024/9/3 7:36:22 2KB 放大转发
1
MIMO信道发射端已知、未知CSI的比较容量利用注水原理瑞利衰落
2024/8/12 13:18:12 942B MIMO 信道容量 CSI 注水原理
1
现在我们回到LDA的原理上,我们在第一节说讲到了LDA希望投影后希望同一种类别数据的投影点尽可能的接近,而不同类别的数据的类别中心之间的距离尽可能的大,但是这只是一个感官的度量。
现在我们首先从比较简单的二类LDA入手,严谨的分析LDA的原理。
    假设我们的数据集D={(x1,y1),(x2,y2),...,((xm,ym))}D={(x1,y1),(x2,y2),...,((xm,ym))},其中任意样本xixi为n维向量,yi∈{0,1}yi∈{0,1}。
我们定义Nj(j=0,1)Nj(j=0,1)为第j类样本的个数,Xj(j=0,1)Xj(j=0,1)为第j类样本的集合,而μj(j=0,1)μj(j=0,1)为第j类样本的均值向量,定义Σj(j=0,1)Σj(j=0,1)为第j类样本的协方差矩阵(严格说是缺少分母部分的协方差矩阵)。
    μjμj的表达式为:μj=1Nj∑x∈Xjx(j=0,1)μj=1Nj∑x∈Xjx(j=0,1)    ΣjΣj的表达式为:Σj=∑x∈Xj(x−μj)(x−μj)T(j=0,1)Σj=∑x∈Xj(x−μj)(x−μj)T(j=0,1)    由于是两类数据,因此我们只需要将数据投影到一条直线上即可。
假设我们的投影直线是向量ww,则对任意一个样本本xixi,它在直线ww的投影为wTxiwTxi,对于我们的两个类别的中心点μ0,μ1μ0,μ1,在在直线ww的投影为wTμ0wTμ0和wTμ1wTμ1。
由于LDA需要让不同类别的数据的类别中心之间的距离尽可能的大,也就是我们要最大化||wTμ0−wTμ1||22||wTμ0−wTμ1||22,同时我们希望同一种类别数据的投影点尽可能的接近,也就是要同类样本投影点的协方差wTΣ0wwTΣ0w和wTΣ1wwTΣ1w尽可能的小,即最小化wTΣ0w+wTΣ1wwTΣ0w+wTΣ1w。
综上所述,我们的优化目标为:argmaxwJ(w)=||wTμ0−wTμ1||22wTΣ0w+wTΣ1w=wT(μ0−μ1)(μ0−μ1)TwwT(Σ0+Σ1)wargmax⏟wJ(w)=||wTμ0−wTμ1||22wTΣ0w+wTΣ1w=wT(μ0−μ1)(μ0−μ1)TwwT(Σ0+Σ1)w    我们一般定义类内散度矩阵SwSw为:Sw=Σ0+Σ1=∑x∈X0(x−μ0)(x−μ0)T+∑x∈X1(x−μ1)(x−μ1)TSw=Σ0+Σ1=∑x∈X0(x−μ0)(x−μ0)T+∑x∈X1(x−μ1)(x−μ1)T    同时定义类间散度矩阵SbSb为:Sb=(μ0−μ1)(μ0−μ1)TSb=(μ0−μ1)(μ0−μ1)T    这样我们的优化目标重写为:argmaxwJ(w)=wTSbwwTSwwargmax⏟wJ(w)=wTSbwwTSww    仔细一看上式,这不就是我们的广义瑞利商嘛!这就简单了,利用我们第二节讲到的广义瑞利商的性质,我们知道我们的J(w)J(w)最大值为矩阵S−12wSbS−12wSw−12SbSw−12的最大特征值,而对应的ww为S−12wSbS−12wSw−12SbSw−12的最大特征值对应的特征向量!而S−1wSbSw−1Sb的特征值和S−12wSbS−12wSw−12SbSw−12的特征值相同,S−1wSbSw−1Sb的特征向量w′w′和S−12wSbS−12wSw−12SbSw−12的特征向量ww满足w′=S−12www′=Sw−12w的关系!    注意到对于二类的时候,SbwSbw的方向恒为μ0−μ1μ0−μ1,不妨令Sbw=λ(μ0−μ1)Sbw=λ(μ0−μ1),将其带入:(S−1wSb)w=λw(Sw−1Sb)w=λw,可以得到w=S−1w(μ0−μ1)w=Sw−1(μ0−μ1),也就是说我们只要求出原始二类样本的均值和方差就可以确定最佳的投影方向ww了。
2024/7/30 21:57:26 3KB MATLAB 人脸识别 LDA knn
1
计算经过BPSK信号和加性白噪声在经过平坦瑞利信道的误码率统计,只解调实部
2024/7/20 5:32:15 749B BPSK瑞利信道
1
非常详细,有条理的代码,可以画图,已经编译通过
2024/6/25 18:05:20 6KB 瑞利衰落信道 分集 qpsk awgn信道
1
进行瑞利信道仿真,产生瑞利衰落仿真图,精确多普勒仿真图,多普勒频移仿真图,高斯时域信号仿真图。
2024/6/24 15:54:38 16KB 瑞利信道
1
OFDM瑞利衰落信道下的MATLAB程序
2024/6/9 14:26:36 2KB OFDM Rayleigh Channel Matlab
1
共 68 条记录 首页 上一页 下一页 尾页
在日常工作中,钉钉打卡成了我生活中不可或缺的一部分。然而,有时候这个看似简单的任务却给我带来了不少烦恼。 每天早晚,我总是得牢记打开钉钉应用,点击"工作台",再找到"考勤打卡"进行签到。有时候因为工作忙碌,会忘记打卡,导致考勤异常,影响当月的工作评价。而且,由于我使用的是苹果手机,有时候系统更新后,钉钉的某些功能会出现异常,使得打卡变得更加麻烦。 另外,我的家人使用的是安卓手机,他们也经常抱怨钉钉打卡的繁琐。尤其是对于那些不太熟悉手机操作的长辈来说,每次打卡都是一次挑战。他们总是担心自己会操作失误,导致打卡失败。 为了解决这些烦恼,我开始思考是否可以通过编写一个全自动化脚本来实现钉钉打卡。经过一段时间的摸索和学习,我终于成功编写出了一个适用于苹果和安卓系统的钉钉打卡脚本。
2024-04-09 15:03 15KB 钉钉 钉钉打卡