水环境预测软件,水质预测模型,包含河流、湖库的一维水质模型、二维水质模型。
内置各种模型公式和解释。
针对环境影响评价、环评预测、饮用水水源保护区划分预测具有很好的帮助。
2025/10/29 0:26:20 7.25MB 水环境 水质 预测模型 一维水质
1
详细介绍了应用模型预测控制理论进行无人驾驶车辆控制的基础方法,结合运动规划与跟踪实例详细说明了预测模型建立、方法优化、约束处理和反馈校正的方法,给出了Matlab仿真代码和详细图解仿真步骤。
1
糖尿病数据集"diabetes.csv"是一个广泛用于统计分析和机器学习任务的数据集,特别是针对深度学习的应用。
这个数据集包含了大量关于糖尿病患者的医疗记录,旨在帮助研究者们预测糖尿病的发展趋势或者评估疾病管理策略的效果。
下面我们将深入探讨该数据集中的关键知识点。
1.数据集结构:通常,CSV(CommaSeparatedValues)文件是一种存储表格数据的格式,每一行代表一个观测值,列则对应不同的特征或变量。
在这个糖尿病数据集中,每一行可能代表一个患者在特定时间点的健康状况。
2.特征详解:-年龄(Age):患者年龄,对于疾病发展有显著影响。
-性别(Sex):患者性别,男性和女性可能面临不同的糖尿病风险。
-BMI(BodyMassIndex):身体质量指数,是衡量体重与身高比例的一个指标,与糖尿病风险相关。
-血压(BloodPressure):血压水平,高血压是糖尿病并发症的重要因素。
-葡萄糖(Glucose):血液中的葡萄糖浓度,直接影响糖尿病的诊断。
-胆固醇(Cholesterol):血液中的胆固醇含量,高胆固醇可能加剧糖尿病并发症。
-心电图(ECG):心电图结果,可以反映心脏健康状况,可能影响糖尿病的整体管理。
-尿蛋白(UrineProtein):尿液中的蛋白质含量,异常可能表明肾脏受损,常见于糖尿病并发症。
-甲状腺刺激激素(TSH):甲状腺功能的指标,甲状腺问题可能与糖尿病有关联。
-以及其他可能的医疗指标和历史数据。
3.目标变量:数据集可能包含一个目标变量,例如“糖尿病进展”或“并发症发生”,用于预测模型的训练和验证。
这个变量可能是二元的(如无/有并发症)或连续的(如疾病严重程度评分)。
4.数据预处理:在使用数据集之前,通常需要进行数据清洗,处理缺失值、异常值,以及可能的分类变量编码。
此外,为了适应深度学习模型,可能需要对数值特征进行标准化或归一化。
5.模型构建:在深度学习中,可以使用各种神经网络架构,如卷积神经网络(CNN)用于特征提取,循环神经网络(RNN)处理时间序列数据,或者全连接网络(FCN)处理一般的数据。
更先进的模型如长短时记忆网络(LSTM)或门控循环单元(GRU)也能用于捕捉患者健康状况随时间变化的模式。
6.训练与评估:模型的训练通常涉及反向传播和优化算法(如梯度下降或Adam)。
评估指标可能包括准确率、召回率、F1分数、AUC-ROC曲线等,具体取决于任务的性质。
7.隐私与伦理:在处理这类个人健康数据时,必须遵守严格的隐私保护规定,确保数据脱敏且匿名化,以保护患者隐私。
8.预测与解释:模型预测的结果需要解释,以便医生和患者理解并采取相应行动。
可解释性机器学习方法如局部可解释性模型(LIME)和SHAP值可以提供洞察模型决策背后的特征重要性。
"diabetes.csv"数据集为糖尿病研究提供了一个宝贵的资源,通过深度学习方法,我们可以挖掘其中的潜在规律,提高疾病预测的准确性,并为患者提供更好的健康管理建议。
在实际应用中,要充分利用数据集,同时确保数据安全和合规性。
2025/10/12 17:01:14 9KB 数据集
1
一个基于人体姿态研究的手语图像识别系统。
根据OpenPose人体姿态开源模型和YOLOv3自训练手部模型检测视频和图像,再把数字特征进行分类器模型预测,将预测结果以文本形式展现出来。
1
ARMA模型预测及其对参数的识别完整有效程序程序。
可以一次进行参数识别
2025/9/9 6:31:41 3KB ARMA
1
基于状态空间的模型预测MPC控制器的设计,附带例子(MATLAB)
2025/9/5 3:33:57 5KB MPC
1
针对模型预测控制给出了详细介绍,附带有例程,对于初学者有很大帮助!
2025/8/26 19:17:34 852KB MPC
1
《PLS偏最小二乘法在MATLAB中的实现详解》PLS(PartialLeastSquares,偏最小二乘)是一种统计分析方法,广泛应用于多元数据分析,特别是在化学计量学、机器学习和模式识别等领域。
它通过将原始数据投影到一个新的低维空间中,使因变量与自变量之间的关系得到最大化,并且能有效处理多重共线性问题。
MATLAB作为强大的数值计算和数据可视化工具,是实现PLS的理想平台。
本资料包含两个部分:单因变量的PLS实现和多因变量的PLS实现。
下面将对这两个方面进行详细阐述。
1.单因变量PLS:单因变量的PLS主要针对只有一个响应变量的情况。
在MATLAB中,我们首先需要定义输入变量X和输出变量y,然后构建PLS模型。
关键步骤包括:-数据预处理:对数据进行标准化或归一化,以消除量纲影响。
-计算X和y的相关矩阵,找到最大相关性的方向。
-通过奇异值分解(SVD)分解相关矩阵,得到主成分。
-选择合适的主成分数量,这通常通过交叉验证来确定。
-使用选定的主成分构建PLS回归模型,预测y值。
2.多因变量PLS:对于多因变量情况,PLS的目标是同时考虑多个响应变量。
此时,我们可以使用多响应PLS(MRPLS)或者偏最小二乘判别分析(PLSDA)。
MATLAB中的实现步骤大致相同,但需要处理多个y变量:-同样进行数据预处理。
-计算X与所有y的联合相关矩阵。
-SVD分解该联合相关矩阵,提取主成分。
-对每个y变量分别建立PLS模型,每个模型有自己的权重向量和载荷。
-使用选定的主成分,对每个y变量进行预测。
在MATLAB中,可以利用内置函数如`plsregress`或自定义脚本来实现这些过程。
自定义脚本能够提供更大的灵活性,允许用户调整参数和添加额外的特性,如正则化、特征选择等。
总结,PLS偏最小二乘法在MATLAB中的实现涉及数据预处理、主成分提取、模型构建和验证等多个环节。
通过理解这些步骤,可以有效地应用PLS解决实际问题,无论是单因变量还是多因变量的情况。
提供的MATLAB程序代码文档将为读者提供具体的实现细节和示例,帮助深入理解和掌握PLS算法。
2025/8/9 10:36:08 4KB 偏最小二乘 matlab程序
1
意大利专家的多年模型预测控制算法总结,共有9章,2021年更新,可用于BMSSOC估计,PMSM估计等
2025/5/31 19:45:01 13MB 模型预测控制
1
贝叶斯应用:网络评论预测食品安全案例测试集及源码:数据为2019CCF大数据与计算智能大赛提供的10000条对O2O店铺的评论文本训练数据,分为与食品安全有关和与食品安全无关两个类别。
需要根据训练集构造文本分类模型,预测2000条测试集中的评论是否与食品安全有关。
2025/5/22 1:26:25 591KB 测试数据集
1
共 101 条记录 首页 上一页 下一页 尾页
在日常工作中,钉钉打卡成了我生活中不可或缺的一部分。然而,有时候这个看似简单的任务却给我带来了不少烦恼。 每天早晚,我总是得牢记打开钉钉应用,点击"工作台",再找到"考勤打卡"进行签到。有时候因为工作忙碌,会忘记打卡,导致考勤异常,影响当月的工作评价。而且,由于我使用的是苹果手机,有时候系统更新后,钉钉的某些功能会出现异常,使得打卡变得更加麻烦。 另外,我的家人使用的是安卓手机,他们也经常抱怨钉钉打卡的繁琐。尤其是对于那些不太熟悉手机操作的长辈来说,每次打卡都是一次挑战。他们总是担心自己会操作失误,导致打卡失败。 为了解决这些烦恼,我开始思考是否可以通过编写一个全自动化脚本来实现钉钉打卡。经过一段时间的摸索和学习,我终于成功编写出了一个适用于苹果和安卓系统的钉钉打卡脚本。
2024-04-09 15:03 15KB 钉钉 钉钉打卡