拟牛顿法和最速下降法一样只要求每一步迭代时知道目标函数的梯度。
通过测量梯度的变化,构造一个目标函数的模型使之足以产生超线性收敛性。
这类方法大大优于最速下降法,尤其对于困难的问题。
另外,因为拟牛顿法不需要二阶导数的信息,所以有时比牛顿法更为有效。
如今,优化软件中包含了大量的拟牛顿算法用来解决无约束,约束,和大规模的优化问题。
本程序是拟牛顿法-bfgs算法的matlab代码。
2025/9/8 22:31:42 1KB Matlab BFGS
1
在开源的基础上实现的逻辑回归,纯python实现,采用的是批量梯度下降,用户可以自己换其他的梯度下降方式
2025/8/23 10:35:01 4KB 逻辑回归
1
用MATLAB软件对灰度图片,实现梯度计算。
2025/8/20 13:51:27 3KB 梯度
1
梯度下降法以及MATLAB相关资料;具体过程请参考我的博客《逻辑与思考系列[1/300]:梯度下降法及matlab实践》
2025/8/17 19:42:36 915KB 梯度下降 matlab
1
采用动量梯度下降算法训练BP网络。
训练样本定义如下:输入矢量为p=[-1-231-115-3]目标矢量为t=[-1-111]有注释
2025/8/15 10:58:52 1KB 神经网络
1
边缘检测是数字图像处理中的一个基础且重要的概念,它用于识别图像中的边界,这些边界通常对应于物体的轮廓。
在硬件实现中,如使用VERILOG这种硬件描述语言(HDL),可以创建高效的边缘检测电路,这对于嵌入式系统、计算机视觉应用以及实时图像处理非常有用。
VERILOG是一种广泛使用的HDL,它允许工程师用类似于编程的语言来描述数字系统的逻辑功能。
通过VERILOG编写的代码可以在FPGA(现场可编程门阵列)或ASIC(应用专用集成电路)上实现,以硬件的形式执行特定的算法,如边缘检测。
边缘检测通常涉及一系计算图像像素的差分或梯度。
其中,最经典的算法之一是Sobel算子,它利用水平和垂直方向的一组滤波器对图像进行卷积,以找出强度变化的区域。
在VERILOG中实现Sobel算子,我们需要定义滤波器系数,并编写逻辑来计算像素邻域内的差分。
以下是可能的VERILOG代码结构:1.**模块定义**:定义一个名为“edge_detector”的模块,输入为原始图像的像素数据,输出为边缘检测后的结果。
可能还需要控制信号,如时钟和使能信号。
```verilogmoduleedge_detector(input[PIXEL_WIDTH-1:0]img_in,//输入图像像素outputreg[PIXEL_WIDTH-1:0]edge_out,//输出边缘像素inputclk,//时钟inputrst//重置信号);```2.**内部变量**:声明用于存储滤波器权重和中间结果的变量。
```verilogreg[PIXEL_WIDTH-1:0]horz_weight,vert_weight;//滤波器权重reg[PIXEL_WIDTH-1:0]horz_diff,vert_diff;//水平和垂直差分```3.**滤波器定义**:定义Sobel算子的水平和垂直滤波器权重。
```verilogparameterSOBEL_X={};//水平滤波器权重parameterSOBEL_Y={};//垂直滤波器权重```4.**计算差分**:在时钟的上升沿,对图像进行卷积并计算差分。
```verilogalways@(posedgeclk)beginif(!rst)beginedge_outTHRESHOLD)edge_out<='1;//达到阈值则认为是边缘,否则设为0end```6.**结束模块定义**:关闭模块。
```verilogendmodule```这个模块可以被综合到FPGA硬件中,实现高速、低延迟的边缘检测。
在实际应用中,可能还需要考虑图像的滚动缓冲、多级缓存和并行处理以提高效率。
VERILOG实现的边缘检测不仅涉及到图像处理的基本概念,还涵盖了数字逻辑设计、并行处理和实时系统设计等多个领域。
理解和实现这样的系统有助于提升硬件设计者在数字信号处理和嵌入式系统设计方面的技能。
2025/8/4 9:34:58 2.93MB verilog
1
LogiReg_data.txt前两列为特征(成绩),第三列为录取与否
2025/7/18 1:11:52 2KB LogiReg_data 梯度下降 逻辑回归
1
采用动量梯度下降算法训练BP网络matlab代码
2025/7/15 5:04:02 937B 动量梯度 BP 网络 matlab代码
1
提取输入图像的HOG特征,输出灰度图、校正图和处理好的梯度图,得到HOG特征做下一步的处理
2025/7/8 1:14:29 5.26MB HOG特征提取
1
贝塞尔曲线是一种在计算机图形学和数学中广泛使用的参数化曲线,它提供了对形状的精细控制,特别是在曲线拟合和路径设计中。
本资源包含MATLAB源码,用于实现从一阶到八阶的贝塞尔曲线拟合,以及一个拟合后评价标准的文档。
一、贝塞尔曲线基础贝塞尔曲线由法国工程师PierreBézier于1962年提出,它基于控制点来定义。
一阶贝塞尔曲线是线性,二阶是二次曲线,而高阶曲线则可以构建出更复杂的形状。
对于n阶贝塞尔曲线,需要n+1个控制点来定义。
这些曲线的特性在于它们通过首尾两个控制点,并且随着阶数的增加,曲线更好地逼近中间的控制点。
二、MATLAB实现MATLAB是一个强大的数值计算和可视化工具,其脚本语言非常适合进行这样的曲线拟合工作。
`myBezier_ALL.m`文件很可能是包含了从一阶到八阶贝塞尔曲线的生成函数。
这些函数可能接收控制点的坐标作为输入,然后通过贝塞尔曲线的数学公式计算出对应的参数曲线。
MATLAB中的贝塞尔曲线可以通过`bezier`函数或直接使用矩阵运算来实现。
三、贝塞尔曲线拟合拟合过程通常涉及找到一组控制点,使得生成的贝塞尔曲线尽可能接近给定的一系列数据点。
这可能通过优化算法,如梯度下降或遗传算法来实现。
在`myBezier_ALL.m`中,可能包含了一个或多个函数来执行这个过程,尝试最小化曲线与数据点之间的距离或误差。
四、拟合的评价标准"拟合的评价标准.doc"文档可能详述了如何评估拟合的好坏。
常见的评价标准包括均方误差(MSE)、均方根误差(RMSE)或者R²分数。
这些指标可以量化拟合曲线与实际数据点之间的偏差程度。
MSE和RMSE衡量的是平均误差的平方,而R²分数表示模型解释了数据变异性的比例,值越接近1表示拟合越好。
五、应用领域贝塞尔曲线在多个领域有广泛应用,包括但不限于CAD设计、游戏开发、动画制作、图像处理和工程计算。
MATLAB源码的提供,对于学习和研究贝塞尔曲线的特性和拟合方法,或者在项目中创建平滑曲线路径,都是非常有价值的资源。
这份MATLAB源码和相关文档为理解并实践贝塞尔曲线拟合提供了一个完整的工具集。
通过学习和利用这些材料,用户不仅可以掌握贝塞尔曲线的基本概念,还能深入理解如何在实际问题中运用它们进行曲线拟合和评估。
2025/6/30 9:00:23 25KB 贝塞尔曲线 曲线拟合
1
共 272 条记录 首页 上一页 下一页 尾页
在日常工作中,钉钉打卡成了我生活中不可或缺的一部分。然而,有时候这个看似简单的任务却给我带来了不少烦恼。 每天早晚,我总是得牢记打开钉钉应用,点击"工作台",再找到"考勤打卡"进行签到。有时候因为工作忙碌,会忘记打卡,导致考勤异常,影响当月的工作评价。而且,由于我使用的是苹果手机,有时候系统更新后,钉钉的某些功能会出现异常,使得打卡变得更加麻烦。 另外,我的家人使用的是安卓手机,他们也经常抱怨钉钉打卡的繁琐。尤其是对于那些不太熟悉手机操作的长辈来说,每次打卡都是一次挑战。他们总是担心自己会操作失误,导致打卡失败。 为了解决这些烦恼,我开始思考是否可以通过编写一个全自动化脚本来实现钉钉打卡。经过一段时间的摸索和学习,我终于成功编写出了一个适用于苹果和安卓系统的钉钉打卡脚本。
2024-04-09 15:03 15KB 钉钉 钉钉打卡