非常有戏的机器学习课程设计《基于朴素贝叶斯方法的fMRI数据分析》。
压缩包内附有课程设计原文,word版本。
同时,附有实验用全部程序,由数十个matlab函数组成。
所以,也是学习matlab和朴素贝叶斯的好资料!数据集相信可以从网站下载,也可以向本人索要。
2025/3/31 2:06:16 122KB 机器学习 课程设计 贝叶斯 fMRI
1
Matlab项目包含用于朴素贝叶斯分类器的源代码和Matlab示例。
该项目中包含的源代码和文件在“项目文件”部分列出,请确保此资源能满足您的要求
2025/3/26 11:43:49 351KB MatLab 贝叶斯
1
歌集市场졸업작품어플리케이션상품이등록되어야이등록되어야리를前处理删除特殊字符好吧矢量化器(计数,TF-IDF)分词器(keras)删除停用词模型线性支持向量机朴素贝叶斯LSTM有线电视新闻网CNN-LSTM服务器阿帕奇DjangoWeb框架CentOS的应用AndroidStudio
2025/1/26 4:58:04 35KB Java
1
本人根据模式识别教材写的朴素贝叶斯分类器,用于人脸识别,人脸参数化方式为,把人脸分为9个区域,计算9个区域的黑白对比度,希望能抛砖引玉,人脸库请自己下载
2024/11/13 18:26:31 5KB 朴素 贝叶斯 分类器
1
汽车有6个属性,每个属性都有几种类别,根据这6个属性来判断汽车的性价比Classvalue如何, ClassValues有以下几种情况unacc,acc,good,vgoodbuying(vhigh,high,med,low) maint(vhigh,high,med,low) doors(2,3,4,5more) persons(2,4,more) lug_boot(small,med,big) safety(low,med,high) ClassValues(unacc,acc,good,vgood)
2024/8/25 10:03:01 11KB 朴素贝叶斯
1
使用Logistic回归模型进行中文文本分类,通过实验,比较和分析了不同的中文文本特征、不同的特征数目、不同文档集合的情况下,基于Logistic回归模型的分类器的性能。
并将其与线性SVM文本分类器进行了比较,结果显示它的分类性能与线性SVM方法相当,表明这种方法应用于文本分类的有效性。
2024/8/14 8:17:40 576KB 论文研究
1
内部包含orl人脸数据库;
朴素贝叶斯分类数值型数据、取点测比例距、训练数据集特征向量化、(PCA+adaboostPCA+SVM人脸识别(可用,全面))四种人脸识别相关的功能,经过测试均可用,4者代码相互之间没有关系,且第四个“测试成功@(PCA+adaboostPCA+SVM(可用,全面))”可以完整进行人脸识别,下载者根据功能需要选择使用
2024/7/24 12:37:36 22.43MB 人脸识别 MATLAB PCA+adaboost orl
1
朴素贝叶斯伪代码,就是一般的伪代码,好好看看把
2024/5/24 3:55:19 827B 朴素贝叶斯
1
《机器学习笔记(2)——使用朴素贝叶斯算法过滤(中英文)垃圾邮件》一文中的邮件数据
1
样本基于正态分布的朴素贝叶斯分类器,实测可用,内含数据
2024/5/1 4:38:11 6KB 贝叶斯 MATLAB
1
共 67 条记录 首页 上一页 下一页 尾页
在日常工作中,钉钉打卡成了我生活中不可或缺的一部分。然而,有时候这个看似简单的任务却给我带来了不少烦恼。 每天早晚,我总是得牢记打开钉钉应用,点击"工作台",再找到"考勤打卡"进行签到。有时候因为工作忙碌,会忘记打卡,导致考勤异常,影响当月的工作评价。而且,由于我使用的是苹果手机,有时候系统更新后,钉钉的某些功能会出现异常,使得打卡变得更加麻烦。 另外,我的家人使用的是安卓手机,他们也经常抱怨钉钉打卡的繁琐。尤其是对于那些不太熟悉手机操作的长辈来说,每次打卡都是一次挑战。他们总是担心自己会操作失误,导致打卡失败。 为了解决这些烦恼,我开始思考是否可以通过编写一个全自动化脚本来实现钉钉打卡。经过一段时间的摸索和学习,我终于成功编写出了一个适用于苹果和安卓系统的钉钉打卡脚本。
2024-04-09 15:03 15KB 钉钉 钉钉打卡