MATLAB程序编写的全相位APFFT程序,对实现数据预处理有很好的参考和帮助作用
2024/10/17 14:37:13 1KB 全相位APFFT
1
TEQC,数据预处理软件,用于卫星导航数据预处理,探测周跳等
2024/9/15 17:47:58 832KB TEQC
1
kaggle入门赛房价预测,包括pandas数据预处理,使用skitlen线性回归预测结果,输出结果表格
1
这篇论文主要探讨了中国古代玻璃制品的风化模型,利用随机森林算法进行数据分析和预测。
文章在数学建模的背景下,获得了山西省一等奖,论文的核心技术包括随机森林优化、数据填充、特征选择、降维模型和分类算法的应用。
对于问题一,研究者处理了数据中的缺失值,使用众数来填充颜色数据。
通过交叉表和卡方检验,确定了表面风化与玻璃类型之间有强相关性,与纹饰有弱相关性,与颜色则无明显关联。
通过观察化学成分的分布,如氧化铅和氧化钾含量,发现不同类型的玻璃具有特定的成分特征。
然后,他们构建了随机森林模型,以风化前后的均值偏差率预测化学成分含量,并验证了预测的准确性。
针对问题二,论文建立了基于重采样的随机森林模型来识别高钾玻璃和铅钡玻璃的分类规律。
通过对14个化学成分的分析,确定了二氧化硅、氧化钾、氧化铅和氧化钡作为关键因素。
通过投影寻踪法降低维度至5个重要成分,并利用改进的k-means聚类算法,将样本分为3个亚类,结果与实际相符。
通过调整聚类数优化损失函数,验证了初始设定的合理性。
在问题三中,研究者加入了有无风化的指标,继续使用随机森林模型预测玻璃类型,测试集预测准确率达到100%。
同时,通过支持向量机(SVM)和贝叶斯判别法结合扰动项,验证了有无风化指标对分类结果的影响,结果显示这个指标的作用不大。
此外,通过正态扰动测试随机森林模型的敏感性,证明模型的稳定性。
对于问题四,论文建立逐步回归模型,寻找不同类别化学成分间的线性关联。
通过VIF方差膨胀因子分析,确定了两类玻璃在二氧化硅、氧化钾、氧化铅和氧化钡等成分上的显著差异性,这与之前的问题二分析结果一致。
总结来说,这篇论文在数学建模的框架下,利用随机森林算法解决了古代玻璃制品风化的建模问题,包括了数据预处理、分类模型建立、特征重要性分析、降维聚类和线性关联研究等多个方面。
这些方法不仅在解决本问题上取得了良好效果,也为类似的历史文物研究提供了有价值的分析工具和思路。
2024/9/2 15:54:31 2.45MB 数学建模 随机森林
1
spss统计分析和数据挖掘案例视频教程和案例数据集。
迅雷下载链接,亲测可行,800多M。
结合大量的实例对SPSS各模块的统计分析功能及图形功能等进行了详细讲解。
每章均给出大量分析案例,具体内容为SPSS简介、SPSS数据挖掘系统介绍、SPSS数据文件管理、SPSS数据预处理、SPSS基本统计分析、多重反应分析、均值比较与检验、统计图制作、参数检验、回归分析、方差分析、相关分析、聚数分析、判别分析、因子分析、对应分析与结合分析、信度分析、生存分析、对数线性模型、时间序列分析、缺失值分析,以及SPSS在财务智能、数据预测、股市分析、社会经济分析、金融数据分析等方面的数据挖掘应用。
2024/8/19 0:29:51 98B spss19 视频教程 案例 数据集
1
1、掌握数据预处理的方法,对数据进行预处理;
2、掌握基本K-MEANS算法的使用;
2024/7/24 13:49:28 276KB K-MEANS聚类
1
机器学习入门到精通50天,python代码编写,1.数据预处理2.简单线性回归3.多元线性回归4.逻辑回归5.k近邻法(k-NN)6.支持向量机(SVM)7.决策树8.随机森林9.K-均值聚类10.层次聚类
2024/7/23 1:49:07 83B python 机器学习 逻辑回归 决策树
1
分享课程——深度学习-对抗生成网络实战(GAN);
对抗生成网络实战系列主要包括三大核心内容:1.经典GAN论文解读;
2.源码复现解读;
3.项目实战应用。
全程实战解读各大经典GAN模型构建与应用方法,通俗讲解论文中核心知识点与整体网络模型架构,从数据预处理与环境配置开始详细解读项目源码及其应用方法。
提供课程所需全部数据,代码,PPT。
第1章对抗生成网络架构原理与实战解析第2章基于CycleGan开源项目实战图像合成第3章stargan论文架构解析第4章stargan项目实战及其源码解读。




第9章基础补充-PyTorch卷积模型实例
2024/5/23 10:45:56 773B 人工智能 深度学习
1
支持向量机非线性回归通用matlab程序,本程序使用支持向量机法,实现对数据的非线性回归,核函数的设定和修改在函数内部进行,数据预处理在函数外部进行,简单易懂,希望能对大家有所帮助!
2024/4/20 14:17:39 3KB SVM 非线性回归
1
配套的相关资料,好东西。
菜菜的课程,看了就知道是好东西了。
01决策树课件数据源码02随机森林03数据预处理和特征工程04主成分分析PCA与奇异值分解SVD05逻辑回归与评分卡06聚类算法Kmeans07支持向量机上08支持向量机下09回归大家族:线性回归,岭回归,Lasso与多项式回归010朴素贝叶斯011XGBoost
2024/2/5 9:49:43 153.32MB 菜菜 机器学习 sklearn
1
共 39 条记录 首页 上一页 下一页 尾页
在日常工作中,钉钉打卡成了我生活中不可或缺的一部分。然而,有时候这个看似简单的任务却给我带来了不少烦恼。 每天早晚,我总是得牢记打开钉钉应用,点击"工作台",再找到"考勤打卡"进行签到。有时候因为工作忙碌,会忘记打卡,导致考勤异常,影响当月的工作评价。而且,由于我使用的是苹果手机,有时候系统更新后,钉钉的某些功能会出现异常,使得打卡变得更加麻烦。 另外,我的家人使用的是安卓手机,他们也经常抱怨钉钉打卡的繁琐。尤其是对于那些不太熟悉手机操作的长辈来说,每次打卡都是一次挑战。他们总是担心自己会操作失误,导致打卡失败。 为了解决这些烦恼,我开始思考是否可以通过编写一个全自动化脚本来实现钉钉打卡。经过一段时间的摸索和学习,我终于成功编写出了一个适用于苹果和安卓系统的钉钉打卡脚本。
2024-04-09 15:03 15KB 钉钉 钉钉打卡