###数据可视化-PowerBI####一、课前准备与快速入门在开始学习PowerBI之前,我们需要做好一些准备工作:1.**安装PowerBI**:首先确保已经安装了PowerBIDesktop,可以从Microsoft官网免费下载。
2.**了解图表类型**:熟悉常用的图表类型如折线图、条形图、饼图等,这些图表占据了大多数数据可视化的应用场景。
3.**熟悉PowerQuery和PowerPivot**:PowerQuery用于数据清洗和导入,PowerPivot则用于构建复杂的数据模型。
4.**准备数据源**:准备好要分析的数据,并了解如何将其导入PowerBI。
####二、PowerBI简介PowerBI是一款由Microsoft开发的商业智能工具,它提供了从单一视图到复杂的交互式报告的所有功能。
PowerBI主要有三个版本:-**Desktop**:主要用于创建和编辑报表,是最常用的版本。
-**Service(ProandPremium)**:用于共享和协作,支持实时刷新和大规模部署。
-**Mobile**:可在移动设备上查看报告。
####三、PowerBI界面介绍PowerBI的界面主要分为三个部分:1.**多页报表视图**:显示最终的可视化结果。
2.**数据视图**:进行数据建模的地方,可以在此添加新表、创建关系和度量值。
3.**关系视图**:用于查看和管理数据表之间的关系。
####四、PowerBI数据可视化流程1.**获取数据**:使用PowerQuery从各种来源导入数据。
2.**数据建模**:在PowerPivot中对数据进行清理、转换并建立模型。
3.**数据可视化**:利用PowerView创建交互式报告。
4.**分发数据**:将完成的报告发布到PowerBI服务并与他人共享。
####五、可视化图表类型PowerBI提供了多种类型的图表供用户选择,以适应不同的数据展示需求:1.**常用图表**:-**折线图**:用于展示随时间变化的趋势。
-**条形图**:适用于比较不同类别的数量。
-**饼图**:展示各个部分在整体中的占比。
-**散点图**:显示数据点间的分布或关联。
2.**高级图表**:-**卡片图**:展示单个数值。
-**雷达图**:用于比较多个变量。
-**瀑布图**:展示数据的增减变化过程。
-**箱线图**:展示数据分布的统计摘要。
-**标靶图**:对比实际值与目标值。
-**漏斗图**:展示业务流程中的转化率。
-**树状图**:用于层次结构数据的可视化。
-**气泡图**:同时展示三个维度的数据。
-**词云图**:以文字大小表示频率。
-**桑基图**:展示数据流的方向和量级。
-**热力图**:展示二维矩阵中的数据密度。
####六、项目实战1.**数据导入与整理**:-**导入数据**:使用PowerQuery从Excel、数据库等来源导入数据。
-**使用查询编辑器**:对数据进行清洗和转换。
-**数据库导入数据**:直接连接到MySQL等数据库并导入数据。
2.**建立数据分析模型**:-**建立数据模型**:在PowerPivot中创建表格间的关系。
-**新建度量值和新建列**:利用DAX函数创建新的计算字段。
-**DAX函数**:包括聚合函数、逻辑函数、信息函数等。
3.**可视化报告**:-**生成可视化报告**:在PowerView中创建交互式报告。
-**报告的筛选设置**:为报告添加筛选条件。
-**报告的格式设置**:调整图表的颜色、字体等样式。
-**设置报告的钻取**:让用户能够深入探索数据细节。
4.**Dashboard的制作原则**:-**选择合适的图表**:根据数据特性选择最合适的图表类型。
-**Dashboard的设计建议**:保持布局清晰,确保信息一目了然。
####七、拓展点、未来计划、行业趋势随着大数据技术的发展,数据可视化工具的需求日益增加。
PowerBI作为一款强大的工具,在未来有望继续扩展其功能,更好地满足企业和个人的需求。
例如,增强机器学习集成能力,提高自动化程度等。
####八、总结通过本课程的学习,我们不仅掌握了PowerBI的基本使用方法,还深入了解了数据可视化的重要性以及如何有效地运用各种图表来表达数据背后的故事。
希望每位学员都能够熟练地使用PowerBI,并在未来的工作中发挥重要作用。
2025/9/10 15:28:55 4.62MB
1
OracleSQLDeveloper是一个免费的集成开发环境,简化了传统部署和云部署中Oracle数据库的开发和管理。
SQLDeveloper提供完整的端到端的PL/SQL应用开发,包括一个用于运行查询和脚本的工作表,一个用于管理数据库的DBA控制台,一个报告界面、一个全面的数据建模解决方案,以及一个用于将您的第三方数据库迁移到Oracle的迁移平台。
2025/8/19 16:41:45 82KB oracle
1
简介:
《PyPI官网下载GPJax-0.3.1.tar.gz——深入理解Python科学计算库》在Python的生态系统中,PyPI(Python Package Index)是最重要的资源库,它为全球开发者提供了海量的Python库,方便用户下载和分享。
本文将深入探讨一个名为GPJax的Python库,具体为GPJax-0.3.1版本,通过其在PyPI官网发布的资源,我们来剖析这个库的功能、用途以及如何在分布式环境和云原生架构中发挥作用。
GPJax,全称为Gaussian Processes in Jax,是一个基于Jax的高效、可微分的高斯过程库。
Jax是一个灵活且高效的数值计算库,它提供了自动梯度和并行计算的能力,广泛应用于机器学习和科学计算领域。
GPJax旨在为这些领域的研究者和开发人员提供强大的工具,用于构建和优化高斯过程模型。
高斯过程(Gaussian Process)是一种概率模型,它在机器学习中被用作非参数回归和分类方法。
GPJax库的优势在于其与Jax的紧密结合,这使得用户能够轻松地对高斯过程模型进行反向传播和梯度下降等优化操作,从而实现更复杂的模型训练和推理。
在GPJax-0.3.1版本中,我们可以期待以下特性:1. **高性能计算**:由于GPJax是建立在Jax之上,它能够利用现代硬件的加速能力,如GPU和TPU,进行大规模数据处理和模型训练。
2. **自动微分**:Jax的自动微分功能使得GPJax可以无缝地支持模型的反向传播,这对于优化模型参数至关重要。
3. **并行计算**:GPJax能够利用Jax的并行化能力,处理大型数据集,提高计算效率。
4. **灵活性**:GPJax允许用户自定义核函数,适应各种问题的具体需求。
5. **易于集成**:作为Python库,GPJax可以轻松地与其他PyPI库(如Scipy、NumPy等)集成,构建复杂的机器学习系统。
对于“zookeeper”标签,GPJax虽然不直接依赖ZooKeeper,但在分布式环境中,ZooKeeper常用于服务发现和配置管理,如果GPJax被部署在分布式集群中,可能与其他系统组件结合,利用ZooKeeper进行协调和服务监控。
至于“云原生(cloud native)”,GPJax的设计理念与云原生原则相吻合,它支持灵活的扩展性,可以适应动态变化的云环境。
在云环境中,GPJax能够充分利用弹性计算资源,实现按需扩展和缩容,以应对不同的工作负载。
在实际应用中,GPJax-0.3.1的压缩包包含的主要文件可能有:- `setup.py`: 安装脚本,用于构建和安装GPJax库。
- `gpjax`目录:库的核心代码,包括模块和类定义。
- `tests`目录:单元测试和集成测试,确保库的正确性和稳定性。
- `docs`目录:可能包含文档和教程,帮助用户理解和使用GPJax。
- `requirements.txt`: 依赖项列表,列出GPJax运行所需的其他Python库。
通过这些资源,开发者可以深入了解GPJax的工作原理,将其整合到自己的项目中,利用高斯过程的优势解决复杂的数据建模和预测问题。
无论是科学研究还是工业应用,GPJax都为Python用户提供了一个强大而灵活的工具,以应对日益增长的计算需求。
2025/6/15 19:48:20 9KB
1
2016中国大数据建模风控建模年终总决赛赛题
2025/3/11 13:34:58 158KB 大数据建模
1
下面的内容,是笔者在学习和工作中的一些总结,其中概念性的内容大多来自书中,实践性的内容大多来自自己的工作和个人理解。
由于资历尚浅,难免会有很多错误,望批评指正!数据仓库包含的内容很多,它可以包括架构、建模和方法论。
对应到具体工作中的话,它可以包含下面的这些内容:以Hadoop、Spark、Hive等组建为中心的数据架构体系。
各种数据建模方法,如维度建模。
调度系统、元数据系统、ETL系统、可视化系统这类辅助系统。
我们暂且不管数据仓库的范围到底有多大,在数据仓库体系中,数据模型的核心地位是不可替代的。
因此,下面的将详细地阐述数据建模中的典型代表:维度建模,对它的的相关理论以及实际使用做深入的分析。
2025/2/10 4:56:32 143KB 漫谈数据仓库之维度建模
1
经典的数据建模资料,作者是大名鼎鼎的davidhay
2024/10/8 17:14:48 2.81MB 数据建模 模型 模式
1
RDBMS到MongoDB迁移白皮书-涵盖了将数据从RDBMS移至MongoDB时的最佳实践和注意事项MongoDB现代化记分卡-使用它来确定哪些现有的旧版应用程序适合迁移到MongoDB实践Medical_Claims_RDBMS_ERD和Medical_Claims_MongoDB-此方案适用于向其保险公司索赔住院费用的患者-此用例的RDBMS架构和MongoDB架构均已随附-这提供了MongoDB和RDBMS的比较数据表示完整的数据建模方法-此演示文稿将指导您完成MongoDB支持的多种数据模型
1
案例练习:1、国内500强集团业务架构设计实践案例介绍2、业务架构实例练习与点评;
3、业务组件模型与业务流程模型应用练习;
案例练习:1、 金融、学校、钢铁、能源等多行业应用架构设计实践案例介绍;
2、 应用架构设计案例实操。
案例练习:1、大型企业数据架构设计案例赏鉴2、企业交互数据表收集、数据建模案例练习案例练习:1、 各行业大型企业基础架构案例鉴赏;
2、 企业基础架构案例练习;
2024/7/29 17:26:44 5.38MB 企业架构 架构案例
1
SAS公司是全球最大的商业智能软件独立厂商及服务提供商,被誉为“世界500强企业背后的管理大师”。
2013年第一届中国高校SAS数据分析大赛由SAS中国主办,本大赛旨在促进中国高校对SAS软件的认识、应用和普及,提高学生SAS软件的应用水平,从而使中国高校在数据建模领域与国际接轨。
SAS数据分析大赛的举办和SAS精英学院的创立,也让社会大众能够有更多渠道了解数据分析行业的最新发展现状。
这样,更多的人了解数据分析,接触数据分析,营造数据分析行业氛围,才能吸引更多的人才加入数据分析行业中来。
下一步,SAS已经将2017年的数据分析大赛计划提上日程,预计将覆盖全国所有的省、自治区和直辖市。
未来,SAS将继续在数据分析人才的教育培训领域加大投入,在推动大数据产业发展和深入培养数据分析人才上发力,为整个数据分析行业的成长贡献自己的力量。
这里打包汇总了2013-2016所有的初赛决赛试题及相关数据,对于刚刚参加比赛的选手或感兴趣的坛友来说很有价值,找资料极其耗费时间又重要
2024/7/14 16:50:04 77.02MB SAS 建模大赛 试题 数据
1
本书的作者都具有实际的数学建模参赛经历和竞赛指导经验。
书中内容完全是根据数学建模竞赛的需要而编排的,涵盖了绝大部分数学建模问题的matlab求解方法。
本书内容分上下两篇。
上篇介绍数学建模中常规方法的matlab实现,包括matlab交互、数据建模、程序绘图、灰色预测、规划模型等方法;
还介绍了各种高级方法的matlab实现,包括遗传算法、粒子群算法、模拟退火算法、人工神经网络、小波分析、动态仿真、数值模拟等。
下篇以真实的数学建模赛题为案例,介绍了如何用matlab求解实际的数学建模问题,给出了详细的建模过程和程序。
书中的附件部分介绍了作者在建模竞赛中屡获大奖的经验。
相信这些经验对准备参加数学建模竞赛的读者会有所帮助。
2024/6/2 15:46:32 16.32MB Matlab 数学建模
1
共 27 条记录 首页 上一页 下一页 尾页
在日常工作中,钉钉打卡成了我生活中不可或缺的一部分。然而,有时候这个看似简单的任务却给我带来了不少烦恼。 每天早晚,我总是得牢记打开钉钉应用,点击"工作台",再找到"考勤打卡"进行签到。有时候因为工作忙碌,会忘记打卡,导致考勤异常,影响当月的工作评价。而且,由于我使用的是苹果手机,有时候系统更新后,钉钉的某些功能会出现异常,使得打卡变得更加麻烦。 另外,我的家人使用的是安卓手机,他们也经常抱怨钉钉打卡的繁琐。尤其是对于那些不太熟悉手机操作的长辈来说,每次打卡都是一次挑战。他们总是担心自己会操作失误,导致打卡失败。 为了解决这些烦恼,我开始思考是否可以通过编写一个全自动化脚本来实现钉钉打卡。经过一段时间的摸索和学习,我终于成功编写出了一个适用于苹果和安卓系统的钉钉打卡脚本。
2024-04-09 15:03 15KB 钉钉 钉钉打卡