用来学习和分析UVC描述符的小软件,免安装,直接打开!
163KB uvc 描述符
1
**正文**在Windows操作系统开发中,MFC(MicrosoftFoundationClasses)是C++库的一个重要组成部分,它为构建桌面应用程序提供了一种结构化的框架。
而USBHID(HumanInterfaceDevice)是USB设备类规范的一种,主要用于人机交互设备,如键盘、鼠标、游戏控制器等。
本文将深入探讨如何使用MFC来实现对USBHID设备的读写操作。
我们需要理解USBHID的基本概念。
HID设备通过使用HID报告来与主机通信,这些报告包含了设备状态和用户输入的数据。
HID类驱动程序是操作系统的一部分,负责解析和处理这些报告。
开发者无需编写驱动程序,只需与设备的接口进行交互即可。
在MFC环境下,我们可以使用`CreateFile`函数打开USBHID设备,其参数通常包括设备的设备路径,例如`\\?\usb#vid_XXXX&pid_YYYY#...`,这里的`XXXX`和`YYYY`分别是设备的供应商ID和产品ID。
接着,我们调用`DeviceIoControl`函数来进行读写操作,传递适当的控制代码,如`IOCTL_HID_GET_REPORT`或`IOCTL_HID_SET_REPORT`。
为了更方便地管理USBHID设备,我们可以创建一个MFC类来封装这些系统调用。
这个类可以包含成员变量,如设备句柄、设备描述符和报告ID,以及成员函数,如`OpenDevice`、`ReadReport`、`WriteReport`和`CloseDevice`。
以下是一个简单的MFC类设计示例:```cppclassCHIDDevice:publicCObject{public:CHIDDevice();~CHIDDevice();boolOpenDevice(LPCTSTRdevicePath);voidCloseDevice();boolReadReport(void*buffer,DWORDsize);boolWriteReport(void*buffer,DWORDsize);private:HANDLEm_hDevice;};```在`OpenDevice`中,我们执行`CreateFile`,在`CloseDevice`中关闭句柄。
`ReadReport`和`WriteReport`则分别使用`DeviceIoControl`进行读写操作,传递适当的缓冲区和大小。
在实际应用中,我们还需要处理USBHID设备的枚举和选择。
可以遍历`SetupDiGetClassDevs`返回的设备信息集,获取HID设备的详细信息,并根据需求选择合适的设备。
此外,为了处理异步读写,可以使用MFC的消息机制,如消息队列和消息映射,或者使用CAsyncSocket或CAsyncMonikerFile等异步I/O类。
利用MFC开发USBHID应用涉及以下几个关键步骤:1.**设备枚举**:使用`SetupDiGetClassDevs`枚举HID设备,通过`SetupDiEnumDeviceInfo`获取设备详细信息。
2.**设备连接**:使用`CreateFile`打开设备,获得设备句柄。
3.**读写操作**:通过`DeviceIoControl`进行数据交换,读取或设置HID报告。
4.**错误处理**:适当处理可能的错误,如设备未找到、访问权限问题等。
5.**异步处理**:根据需要,使用MFC的消息机制实现异步读写。
通过以上步骤,开发者可以构建一个功能完备的MFC应用程序,实现对USBHID设备的高效控制。
在实际项目中,还可以考虑添加设备事件监听、多设备管理等功能,以提升应用的灵活性和可扩展性。
2025/10/11 10:31:51 30.04MB USB
1
ArduinoXInput库该库使您可以使用具有USB功能的Arduino微控制器轻松地模拟Xbox360控制器。
入门voidsetup(){ XInput.begin();}voidloop(){ XInput.press(BUTTON_A); delay(1000); XInput.release(BUTTON_A); delay(1000);}在库开始工作之前,您必须安装一个包含XInputUSB描述符的兼容主板文件,否则微控制器的行为将不像XInput设备。
这不是可选的。
有关更多信息,请参见下面的部分。
安装兼容的板卡软件包后,必须。
安装XInput库后,打开ArduinoIDE并加载位于File->Examples->XInput的示例草图(我建议您首先尝试使用“眨眼”草图)。
仔细检查您是否在“工具”菜单中选择了正确的XInput板和/或XInputUSB类型,然后将草图上传到微控制器。
在Windows上,您可以通过打开操纵杆控制面板()或使用来测试草图是否正常工作。
如果
2025/6/22 18:51:54 31KB arduino library usb arduino-ide
1

颜色分类leetcode哈里斯角Kps和描述符提取这是纯numpy的Hog特征提取特征描述符特征描述符是图像或图像块的表示,它通过提取有用信息并丢弃无关信息来简化图像。
通常,特征描述符将大小为宽x高x3(通道)的图像转换为长度为n的特征向量/数组。
在HOG特征描述符的情况下,输入图像的大小为64x128x3,输出特征向量的长度为3780。
请记住,可以针对其他大小计算HOG描述符,但在这篇文章中,我坚持使用原始论文中提供的数字,以便您可以通过一个具体示例轻松理解该概念。
这一切听起来不错,但什么是“有用的”,什么是“无关紧要的”?要定义“有用”,我们需要知道它“有用”是为了什么?显然,特征向量对于查看图像是没有用的。
但是,它对于图像识别和对象检测等任务非常有用。
当将这些算法产生的特征向量输入到支持向量机(SVM)等图像分类算法时,会产生良好的结果。
但是,什么样的“特征”对分类任务有用?让我们用一个例子来讨论这一点。
假设我们要构建一个对象检测器来检测衬衫和外套的纽扣。
纽扣是圆形的(在图像中可能看起来是椭圆形的)并
2025/6/19 13:18:46 459KB
1
SSDT的全称是SystemServicesDescriptorTable,系统服务描述符表。
这个表就是一个把Ring3的Win32API和Ring0的内核API联系起来。
SSDT并不仅仅只包含一个庞大的地址索引表,它还包含着一些其它有用的信息,诸如地址索引的基地址、服务函数个数等。
通过修改此表的函数地址可以对常用Windows函数及API进行Hook,从而实现对一些关心的系统动作进行过滤、监控的目的。
一些HIPS、防毒软件、系统监控、注册表监控软件往往会采用此接口来实现自己的监控模块。
2025/6/18 10:22:54 497KB SSDTHook
1
简介:
### Spring注解学习:构建简单Web应用#### 引言Spring框架自引入注解支持以来,极大地简化了Java开发中的依赖注入与配置管理过程。
本文将深入探讨如何利用Spring注解来构建一个简单的Web应用,从控制器(Controller)到数据访问对象(DAO),通过实例演示注解在不同层次的应用。
#### Spring注解概述Spring框架提供了多种注解来简化应用的配置和组件的定义。
以下是一些常用的Spring注解:- `@Component`:标记类为Spring的Bean,可以被Spring容器管理和注入到其他Bean中。
- `@Repository`:用于数据访问层,通常标记DAO类,提供额外的异常转换支持。
- `@Service`:用于业务逻辑层,表示服务层的Bean。
- `@Controller`:用于Web层,表示一个控制层的Bean,处理HTTP请求。
- `@Autowired`:自动装配Bean,用于字段或构造函数,无需手动设置依赖。
- `@RequestMapping`:映射Web请求到特定的方法上,用于控制器类或方法上。
- `@Transactional`:用于方法上,声明该方法需要在事务中执行。
#### 构建Web应用:关键步骤1. **项目搭建**:创建一个Web项目,并添加必要的Jar包,如Spring框架的各个模块、AOP联盟、日志库等。
文中提到的Jar包包括aopalliance-1.0.jar、commons-logging-1.1.1.jar、log4j-1.2.15.jar等,这些包对于Spring框架的正常运行至关重要。
2. **配置web.xml**:这是Web应用的部署描述符,用于配置Servlet、过滤器等。
在本例中,配置了Spring的上下文参数、Log4J的日志配置以及字符编码过滤器,确保应用能够正确读取配置并处理请求。
```xml <context-param> <param-name>contextConfigLocation</param-name> <param-value>/WEB-INF/applicationContext.xml</param-value> </context-param> ``` 这段配置指定了Spring的配置文件位置,即`applicationContext.xml`。
3. **编写控制器**:使用`@Controller`注解定义控制器类,并使用`@RequestMapping`注解来指定URL映射。
例如: ```java @Controller public class HelloWorldController { @RequestMapping("/hello") public String helloWorld() { return "hello"; } } ```4. **数据访问层**:使用`@Repository`注解定义DAO类,负责数据的存取操作。
例如: ```java @Repository public class UserRepository { // 数据库操作方法 } ```5. **业务逻辑层**:使用`@Service`注解定义服务层,处理业务逻辑。
例如: ```java @Service public class UserService { @Autowired private UserRepository userRepository; // 业务逻辑方法 } ```6. **事务管理**:在业务逻辑中,可能需要使用`@Transactional`注解来确保数据的一致性和完整性。
7. **测试**:对应用进行单元测试和集成测试,确保各部分功能按预期工作。
#### 结论通过上述步骤,我们可以构建一个基于Spring注解的简单Web应用。
Spring注解的使用极大地简化了配置,提高了开发效率,使得开发者能够更加专注于业务逻辑的实现。
在未来的学习中,我们将更深入地探讨每一层的细节,以及如何利用Spring注解来优化和扩展应用的功能。
2025/6/15 19:51:25 187KB
1
【DM365_NAND启动模式解析】DM365是一款由TexasInstruments(TI)生产的数字媒体处理器,常用于视频处理和嵌入式系统。
在DM365中,NAND闪存是一种常见的非易失性存储器,用于存储固件和操作系统。
NAND启动模式是指DM365在上电或复位后从NAND闪存中加载启动代码的过程。
此过程涉及一系列复杂的步骤,确保系统能够正确地从NAND中读取和执行固件。
**NAND启动流程**1.**初始化**:系统首先初始化RAM1的高2KB栈空间(0x7800-0x7fff),避免覆盖用于存储UBL块号的最后32个字节(0x7ffc-0x8000)。
2.**禁止中断**:所有中断(IRQ和FIQ)被禁用,以确保启动过程不被打断。
3.**设置DEEPSLEEPZ/GIO0**:这个外部引脚在NAND启动时必须处于高电平。
4.**读取NANDID**:读取NAND闪存的设备ID,获取设备特性,如页面大小、块大小等。
5.**初始化NAND区域**:根据NAND的参数设置控制器和寄存器。
6.**搜索UBL描述符**:RBL(ROMBootloader)在block1的page0开始搜索UBL(UserBootLoader)的描述符。
如果未找到正确的UBL,会依次检查接下来的24个块,以防遇到坏块。
7.**处理UBL描述符**:UBL描述符包含入口点地址、占用的NAND页数、起始块和起始页等信息,用于指导UBL的加载和执行。
8.**ECC错误检测和校正**:开启硬件ECC(ErrorCorrectionCode)检测,复制UBL到IRAM(InternalRAM)。
如果检测到4位ECC错误,通过ECC算法进行纠正。
如果多次失败,RBL会尝试下一个块,直到找到有效的UBL描述符,或者在搜索完24个块后转而从SD卡启动。
9.**启动UBL**:在UBL的入口点执行代码,将控制权交给UBL。
10.**安全启动模式**:根据配置,启动模式可能包括PLL旁通模式,不使用快速EMIF、DMA或I-Cache。
在其他模式下,这些功能可以被启用以提高性能。
**NANDUBLdescriptor格式**UBL描述符是一个包含关键信息的数据结构,用于指示如何加载和执行UBL。
它可能包含如下字段:-入口点地址:UBL执行的起点。
-UBL占用的NAND页数:指示UBL的大小,必须是连续的页。
-UBL的起始块和起始页:定义UBL在NAND中的位置。
-MAGICIDs:特定的标识符,用于识别不同的启动模式。
**NAND启动详细流程**1.初始化栈空间、禁止中断、设置DEEPSLEEPZ/GIO0。
2.读取NAND设备ID,初始化NAND控制器。
3.搜索UBL描述符,最多遍历24个块。
4.复制并校验UBL到IRAM,根据UBL描述符配置启动选项。
5.转交控制权给UBL执行。
NAND启动流程图和具体的ARMNANDROMBootloader实例进一步详细说明了这个过程。
此外,支持的NAND设备ID列表确保了对多种NAND闪存设备的兼容性。
DM365的NAND启动模式解析涉及了设备识别、错误检测、固件加载和执行等多个环节,确保了系统的稳定和可靠启动。
理解这一过程对于开发和调试基于DM365的嵌入式系统至关重要。
2025/5/20 16:04:21 249KB DM365
1
###TIDM36x系列DSPNANDFlash启动过程详解####一、NANDFlash启动原理#####1.1DM365支持的NAND启动特性TI的TMS320DM365(以下简称DM365)多媒体处理芯片支持多种启动方式,包括NANDFlash启动。
在NANDFlash启动过程中,DM365具有一系列独特的启动特性:1.**不支持一次性全部固件下载启动**:DM365不支持一次性将所有固件数据从NANDFlash读入内存并启动,而是采用分阶段的方式。
首先从NANDFlash读取第二级启动代码(UserBootLoader,UBL)至ARM内存(ARMInternalMemory,AIM),然后执行UBL。
2.**支持最大4KB页大小的NAND**:支持的NANDFlash页大小可达4KB,这对于大多数常见的NANDFlash设备来说是足够的。
3.**支持特殊数字标志的错误检测**:在加载UBL时会进行错误检测,尝试最多24次在不同的block中寻找特殊数字标志,以确保数据的正确性。
4.**支持30KB大小的UBL**:DM365有32KB的内存用于存放启动代码,其中2KB用于RBL(ROMBootLoader)的堆栈,剩余的空间可用来存储UBL。
5.**用户可选的DMA与I-cache支持**:用户可以根据需要在RBL执行期间启用或禁用DMA和I-cache等功能。
6.**支持4位硬件ECC**:支持每512字节需要ECC位数小于或等于4位的NANDFlash,这有助于提高数据的可靠性。
7.**支持特定的NANDFlash类型**:支持那些需要片选信号在Tr读时间保持低电平的NANDFlash。
#####1.2NANDFlash启动流程NANDFlash启动流程是指从芯片上电到Linux操作系统启动的整个过程,主要包括以下几个步骤:1.**ROMBootLoader(RBL)阶段**:当DM365芯片上电或复位时,会根据BTSEL引脚的状态确定启动方式。
如果是NAND启动,则从ROM中的RBL开始执行。
RBL会初始化必要的硬件资源,如设置堆栈,关闭中断,并读取NANDFlash的ID信息以进行适当的配置。
2.**UserBootLoader(UBL)阶段**:RBL从NANDFlash读取UBL并将其复制到AIM中运行。
UBL负责进一步初始化硬件资源,如DDR内存,并为下一阶段准备环境。
3.**U-Boot阶段**:UBL从NANDFlash读取U-Boot并将其复制到DDR内存中运行。
U-Boot是完整的启动加载程序,它负责最终从NANDFlash读取Linux内核并将其复制到DDR内存中。
4.**Linux内核启动阶段**:U-Boot启动Linux内核,内核加载并运行,此时系统完成启动。
####二、NANDFlash启动的软件配合实现#####2.1UBL描述符的实现UBL描述符是UBL读取和执行的起点。
在NANDFlash中,UBL描述符通常位于特定的位置,包含UBL的起始地址和长度等信息。
RBL通过读取这些描述符来确定UBL的具体位置并加载到AIM中。
#####2.2U-Boot启动实现U-Boot是一种开源的启动加载程序,负责从NANDFlash读取Linux内核并将其加载到内存中。
U-Boot的实现依赖于UBL提供的环境,例如已经初始化的DDR内存。
#####2.3U-Boot更新UBL和U-Boot的原理U-Boot可以被用来更新UBL和自身的代码。
这一过程通常涉及到从NANDFlash读取新的代码版本,验证其完整性,并将其替换现有的UBL或U-Boot代码。
#####2.4NANDFlash没有坏块的情况在理想情况下,即NANDFlash没有坏块的情况下,启动流程会非常顺利。
RBL能够成功地从NANDFlash读取UBL,UBL也能正确地读取U-Boot,进而完成Linux内核的加载。
####三、结束语DM365的NANDFlash启动过程是一个复杂的多阶段过程,涉及ROMBootLoader(RBL)、UserBootLoader(UBL)和U-Boot等多个组件之间的协调工作。
通过对这些组件的理解和优化,可以有效地提高启动速度和系统的稳定性。
希望本文能帮助读者更好地理解DM365的NANDFlash启动过程及其背后的技术细节。
2025/5/20 15:59:25 439KB DSP NANDflash 启动过程分析
1
第一部分Python语言第1章Python简介1.1运行Python1.2变量和算术表达式1.3条件语句1.4文件输入和输出1.5字符串1.6列表1.7元组1.8集合1.9字典1.10迭代与循环1.11函数1.12生成器1.13协程1.14对象与类1.15异常1.16模块1.17获得帮助第2章词汇和语法约定2.1行结构和缩进2.2标识符和保留字2.3数字字面量2.4.字符串字面量2.5容器2.6运算符、分隔符及特殊符号2.7文档字符串2.8装饰器2.9源代码编码第3章类型与对象3.1术语3.2对象的身份与类型3.3引用计数与垃圾收集3.4引用与复制3.5第一类对象3.6表示数据的内置类型3.6.1None类型3.6.2数字类型3.6.3序列类型3.6.4映射类型3.6.5集合类型3.7表示程序结构的内置类型3.7.1可调用类型3.7.2类、类型与实例3.7.3模块3.8解释器内部使用的内置类型3.8.1代码对象3.8.2帧对象3.8.3跟踪对象3.8.4生成器对象3.8.5切片对象3.8.6Ellipsis对象3.9对象行为与特殊方法3.9.1对象的创建与销毁3.9.2对象字符串表示3.9.3对象比较与排序3.9.4类型检查3.9.5属性访问3.9.6属性包装与描述符3.9.7序列与映射方法3.9.8迭代3.9.9数学操作3.9.10可调用接口3.9.11上下文管理协议3.9.12对象检查与dir()第4章运算符与表达式4.1数字操作4.2序列操作4.3字符串格式化4.4高级字符串格式化4.5字典操作4.6集合操作4.7增量赋值4.8属性(.)运算符4.9函数调用()运算符4.10转换函数4.11布尔表达式与真值4.12对象的比较与身份4.13运算优先级4.14条件表达式第5章程序结构与控制流5.1程序结构与执行5.2执行条件语句5.3循环与迭代5.4异常5.4.1内置异常5.4.2定义新异常5.5上下文管理器与with语句5.6断言与__debug__第6章函数与函数编程6.1函数6.2参数传递与返回值6.3作用域规则6.4函数对象与闭包6.5装饰器6.6生成器与yield6.7协程与yield表达式6.8使用生成器与协程6.9列表包含6.10生成器表达式6.11声明式编程6.12lambda运算符6.13递归6.14文档字符串6.15函数属性6.16eval()、exec()和compile()函数第7章类与面向对象编程7.1class语句7.2类实例7.3范围规则7.4继承7.5多态动态绑定和鸭子类型7.6静态方法和类方法7.7特性7.8描述符7.9数据封装和私有属性7.10对象内存管理7.11对象表示和属性绑定7.12__slots__7.13运算符重载7.14类型和类成员测试7.15抽象基类7.16元类7.17类装饰器第8章模块、包与分发8.1模块与import语句8.2从模块导入选定符号8.3以主程序的形式执行8.4模块搜索路径8.5模块加载和编译8.6模块重新加载和卸载8.7包8.8分发Python程序和库8.9安装第三方库第9章输入与输出9.1读取命令行选项9.2环境变量9.3文件和文件对象9.4标准输入、输出和错误9.5print语句9.6print()函数9.7文本输出中的变量插入9.8生成输出9.9Unicode字符串处理9.10UnicodeI/O9.10.1Unicode数据编码9.10.2Unicode字符特性9.11对象持久性与pickle模块第10章执行环境10.1解释器选项与环境10.2交互式会话10.3启动python应用程序10.4站点配置文件10.5用户站点包10.6启用新功能10.7程序终止第11章测试、调试、探查与调优11.1文档字符串和doctest模块11.2单元测试和unittest模块11.3Python调试器和pdb模块11.3.1调试器命令11.3.2从命令行进行调试11.3.3配置调试器11.4程序探查11.5
2025/4/25 17:28:21 26.74MB python django web 参考
1
[原创]自己实现的FPFH算法,效果与PCL中的完全一致。
输入量必须包括离散无拓扑的点云矩阵、点云法向量矩阵、关键点在离散点云中的位置向量、邻域参数这么四个,另外两个量可缺省,填入ISS算法(资源已放出)步骤中用到的r邻域拓扑变量时可以节省运算资源。
输出量为一个矩阵,其中每一行为一个33维度向量,对应一个关键点的FPFH描述符。
个人比较满意的作品,代码变量命名规范、逻辑清晰、可读性强。
2025/4/22 19:46:34 2KB FPFH 三维点云 三维特征提取 matlab
1
共 39 条记录 首页 上一页 下一页 尾页
在日常工作中,钉钉打卡成了我生活中不可或缺的一部分。然而,有时候这个看似简单的任务却给我带来了不少烦恼。 每天早晚,我总是得牢记打开钉钉应用,点击"工作台",再找到"考勤打卡"进行签到。有时候因为工作忙碌,会忘记打卡,导致考勤异常,影响当月的工作评价。而且,由于我使用的是苹果手机,有时候系统更新后,钉钉的某些功能会出现异常,使得打卡变得更加麻烦。 另外,我的家人使用的是安卓手机,他们也经常抱怨钉钉打卡的繁琐。尤其是对于那些不太熟悉手机操作的长辈来说,每次打卡都是一次挑战。他们总是担心自己会操作失误,导致打卡失败。 为了解决这些烦恼,我开始思考是否可以通过编写一个全自动化脚本来实现钉钉打卡。经过一段时间的摸索和学习,我终于成功编写出了一个适用于苹果和安卓系统的钉钉打卡脚本。
2024-04-09 15:03 15KB 钉钉 钉钉打卡