为解决复杂曲面点云在平滑去噪中存在的问题,提出基于曲率信息混合分类的特征保持点云精细算法。
该方法将平面投影与离散算法相结合,采用主成分分析法对点云的局部曲率特性进行评估,使用线性组合混合分类方法将数据分为平面,次特征,富特征类型以及组合类型。
针对不同特征邻域类型,提出平面类型的投影平滑方法,次特征和富特征类型的可变参数校正法平滑方法的线性组合方法实现点云数据的平滑去噪。
转换方法用于激光三维扫描人体扫描系统所获得的高密度点云数据,实验结果表明该方法能够在有效光顺点云的同时保持其表面的几何特征,并简化了法向调整的繁杂运算。
1
MATLAB,可直接替换数据运行。
主成分回归分析PrincipalComponentRegression(PCR)是一种多元回归分析方法,旨在解决自变量间存在多重共线性问题。
2025/8/19 0:12:05 44KB PCA
1
针对高光谱图像空间分辨率不足导致异常检测虚警率过高的问题,提出了一种利用主成分分析(PCA)和IHS变换融合以降低虚警率的算法。
首先对低分辨率高光谱图像进行PCA变换,提取3个主成分;
然后对这3个主成分和高分辨率图像分别进行IHS变换,得到各自的强度分量,把高光谱数据的强度分量替换成高分辨率图像的强度分量;
再运用IHS变换的可逆性,将新的强度分量与原色度分量和饱和度分量进行IHS逆变换,得到空间信息增强的高光谱图像数据;
最后使用KRX算法对空间信息增强的高光谱图像数据进行异常检测。
实验结果表明,本文算法的虚警率与KRX算法相比有很大的降低,取得了良好的检测效果。
1
通过上机实习,加深对语法制导翻译原理的理解,掌握将语法分析所识别的语法成分变换为中间代码的语义翻译方法。
采用递归下降语法制导翻译法,对算术表达式、赋值语句进行语义分析并生成四元式序列。
2025/8/15 0:24:01 75KB 语义分析
1
利用matlab编写的图像主成分分析程序
2025/8/9 19:55:53 453B matlab PCA 主成分变换
1
《PLS偏最小二乘法在MATLAB中的实现详解》PLS(PartialLeastSquares,偏最小二乘)是一种统计分析方法,广泛应用于多元数据分析,特别是在化学计量学、机器学习和模式识别等领域。
它通过将原始数据投影到一个新的低维空间中,使因变量与自变量之间的关系得到最大化,并且能有效处理多重共线性问题。
MATLAB作为强大的数值计算和数据可视化工具,是实现PLS的理想平台。
本资料包含两个部分:单因变量的PLS实现和多因变量的PLS实现。
下面将对这两个方面进行详细阐述。
1.单因变量PLS:单因变量的PLS主要针对只有一个响应变量的情况。
在MATLAB中,我们首先需要定义输入变量X和输出变量y,然后构建PLS模型。
关键步骤包括:-数据预处理:对数据进行标准化或归一化,以消除量纲影响。
-计算X和y的相关矩阵,找到最大相关性的方向。
-通过奇异值分解(SVD)分解相关矩阵,得到主成分。
-选择合适的主成分数量,这通常通过交叉验证来确定。
-使用选定的主成分构建PLS回归模型,预测y值。
2.多因变量PLS:对于多因变量情况,PLS的目标是同时考虑多个响应变量。
此时,我们可以使用多响应PLS(MRPLS)或者偏最小二乘判别分析(PLSDA)。
MATLAB中的实现步骤大致相同,但需要处理多个y变量:-同样进行数据预处理。
-计算X与所有y的联合相关矩阵。
-SVD分解该联合相关矩阵,提取主成分。
-对每个y变量分别建立PLS模型,每个模型有自己的权重向量和载荷。
-使用选定的主成分,对每个y变量进行预测。
在MATLAB中,可以利用内置函数如`plsregress`或自定义脚本来实现这些过程。
自定义脚本能够提供更大的灵活性,允许用户调整参数和添加额外的特性,如正则化、特征选择等。
总结,PLS偏最小二乘法在MATLAB中的实现涉及数据预处理、主成分提取、模型构建和验证等多个环节。
通过理解这些步骤,可以有效地应用PLS解决实际问题,无论是单因变量还是多因变量的情况。
提供的MATLAB程序代码文档将为读者提供具体的实现细节和示例,帮助深入理解和掌握PLS算法。
2025/8/9 10:36:08 4KB 偏最小二乘 matlab程序
1
matlab基于BP神经网络的人脸识别,包含matlab代码及所需要的ORL人脸库,采用了主成分分析法进行特征提取,取得不错的效果。
2025/8/8 8:52:04 6.19MB matlab BP神经网络 人脸识别 ORL
1
参数化时频分析是一种在信号处理领域广泛应用的技术,特别是在处理非平稳信号时,它能提供一个更为精确且灵活的分析框架。
MATLAB作为一种强大的数学计算和数据可视化软件,是进行时频分析的理想工具。
本资源提供了MATLAB实现的参数化时频分析代码,可以帮助用户深入理解和应用这一技术。
我们要理解什么是时频分析。
传统的频谱分析,如傅立叶变换,只能对静态信号进行分析,即假设信号在整个时间范围内是恒定的。
然而,在实际工程和科学问题中,许多信号的频率成分会随时间变化,这种信号被称为非平稳信号。
为了解决这个问题,时频分析应运而生,它允许我们同时观察信号在时间和频率域上的变化。
参数化时频分析是时频分析的一个分支,它通过建立特定的模型来近似信号的时频分布。
这种模型通常包括一些参数,可以通过优化这些参数来获得最佳的时频表示。
这种方法的优点在于可以提供更精确的时频分辨率,同时减少时频分析中的“时间-频率分辨率权衡”问题。
在MATLAB中,实现参数化时频分析通常涉及以下几个步骤:1.**数据预处理**:需要对原始信号进行适当的预处理,例如去除噪声、滤波或者归一化,以提高后续分析的准确性。
2.**选择时频分布模型**:常见的参数化时频分布模型有短时傅立叶变换(STFT)、小波变换、chirplet变换、模态分解等。
选择哪种模型取决于具体的应用场景和信号特性。
3.**参数估计**:对选定的模型进行参数估计,通常采用最大似然法或最小二乘法。
这一步涉及到对每个时间窗口内的信号参数进行优化,以得到最匹配信号的时频分布。
4.**重构与可视化**:根据估计的参数重构信号的时频表示,并使用MATLAB的图像绘制函数(如`imagesc`)进行可视化,以便直观地查看信号的时频特征。
5.**结果解释与应用**:分析重构后的时频图,识别信号的关键特征,如突变点、周期性变化等,然后将其应用于故障诊断、信号分离、通信信号解调等多种任务。
在提供的`PTFR_toolboxs`压缩包中,可能包含了实现上述步骤的各种函数和脚本,如用于预处理的滤波函数、参数化模型的计算函数、以及用于绘图和结果解析的辅助工具。
`README.docx`文档应该详细介绍了工具箱的使用方法、示例以及可能的注意事项。
通过学习和使用这个MATLAB代码库,你可以进一步提升在参数化时频分析方面的技能,更好地处理和理解非平稳信号。
无论是学术研究还是工程实践,这种能力都是非常有价值的。
记得在使用过程中仔细阅读文档,理解每一步的作用,以便于将这些知识应用到自己的项目中。
2025/8/5 16:54:38 29KB 时频分析
1
函数型数据分析的全部代码和数据以及参考文献,全部是本人亲自收集和处理的,共300多M,相关介绍详见我的博文https://blog.csdn.net/lusongno1/article/details/89305520#comments_14878182。
1

ASTM B250 - 铜合金线的通用要求规范ASTM B250 是美国材料和试验协会(ASTM)发布的一份规范,旨在规定铜合金线的通用要求。
该规范涵盖了铜合金线的化学成分、物理和机械性能等方面的要求,并为铜合金线的生产和应用提供了统一的标准。
1. 范围ASTM B250 适用于铜合金线的生产和应用,包括自由切割黄铜棒、柱、形状的生产,以及 Copper-Silicon 合金线、磷磷铜合金线、铜贝リル合金线、铜镍锌合金线等各种铜合金线的生产。
2. 引用文件ASTM B250 规范引用了多个 ASTM 规范,包括 B 16/B 16M、B 99/B 99M、B 134/B 134M、B 159/B 159M、B 193、B 194、B 197/B 197M、B 206/B 206M 等,涵盖了铜合金线的化学成分、物理和机械性能等方面的要求。
3. 化学成分ASTM B250 规范规定了铜合金线的化学成分,包括铜的含量、杂质的含量、合金元素的含量等。
例如,自由切割黄铜棒、柱、形状的化学成分要求为 Cu+Ag 58.5% min、Pb 1.5% max、Fe 0.10% max 等。
4. 物理性能ASTM B250 规范规定了铜合金线的物理性能,包括 密度、电阻率、热导率、热膨胀系数等。
例如,铜合金线的密度要求为 8.94 g/cm³ min。
5. 机械性能ASTM B250 规范规定了铜合金线的机械性能,包括抗拉强度、抗压强度、延伸率、硬度等。
例如,铜合金线的抗拉强度要求为 450 MPa min。
6. 单位ASTM B250 规范规定了两种单位系统:SI 单位系统和英制单位系统。
例如,铜合金线的尺寸可以用 mm 或英寸表示。
7. 编辑记录ASTM B250 规范的编辑记录包括了所有的编辑变化和修订记录,以便用户了解规范的变化和发展。
ASTM B250 规范为铜合金线的生产和应用提供了统一的标准,涵盖了化学成分、物理和机械性能等方面的要求,为铜合金线的生产和应用提供了重要的指导作用。
2025/6/19 16:46:52 152KB
1
共 180 条记录 首页 上一页 下一页 尾页
在日常工作中,钉钉打卡成了我生活中不可或缺的一部分。然而,有时候这个看似简单的任务却给我带来了不少烦恼。 每天早晚,我总是得牢记打开钉钉应用,点击"工作台",再找到"考勤打卡"进行签到。有时候因为工作忙碌,会忘记打卡,导致考勤异常,影响当月的工作评价。而且,由于我使用的是苹果手机,有时候系统更新后,钉钉的某些功能会出现异常,使得打卡变得更加麻烦。 另外,我的家人使用的是安卓手机,他们也经常抱怨钉钉打卡的繁琐。尤其是对于那些不太熟悉手机操作的长辈来说,每次打卡都是一次挑战。他们总是担心自己会操作失误,导致打卡失败。 为了解决这些烦恼,我开始思考是否可以通过编写一个全自动化脚本来实现钉钉打卡。经过一段时间的摸索和学习,我终于成功编写出了一个适用于苹果和安卓系统的钉钉打卡脚本。
2024-04-09 15:03 15KB 钉钉 钉钉打卡