蚁群算法作为一种新的启发式优化算法,虽然刚刚问世十几年,却引起相关领域研究者的关注。
蚁群算法具有较强的鲁棒性、通用性、快速性、全局优化性、并行搜索等优点。
蚁群算法作为群智能的典型实现案例,通过模拟生物寻优能力解决问题,收到学术界的广泛关注。
2025/8/6 15:48:52 22KB 人工智能 期末报告 蚁群算法
1
在生命科学领域中,人们已经对遗传(Heredity)与免疫(Immunity)等自然现象进行了广泛深入的研究。
六十年代Bagley和Rosenberg等先驱在对这些研究成果进行分析与理解的基础上,借鉴其相关内容和知识,特别是遗传学方面的理论与概念,并将其成功应用于工程科学的某些领域,收到了良好的效果。
时至八十年代中期,美国Michigan大学的Hollan教授不仅对以前的学者们提出的遗传概念进行了总结与推广,而且给出了简明清晰的算法描述,并由此形成目前一般意义上的遗传算法(GeneticAlgorithm)GA。
由于遗传算法较以往传统的搜索算法具有使用方便、鲁棒性强、便于并行处理等特点,因而广泛应用于组合优化、结构设计、人工智能等领域。
另一方面,Farmer和Bersini等人也先后在不同时期、不同程度地涉及到了有关免疫的概念。
遗传算法是一种具有生成+检测(generateandtest)的迭代过程的搜索算法。
从理论上分析,迭代过程中,在保留上一代最佳个体的前提下,遗传算法是全局收敛的。
然而,在对算法的实施过程中不难发现两个主要遗传算子都是在一定发生概率的条件下,随机地、没有指导地迭代搜索,因此它们在为群体中的个体提供了进化机会的同时,也无可避免地产生了退化的可能。
在某些情况下,这种退化现象还相当明显。
另外,每一个待求的实际问题都会有自身一些基本的、显而易见的特征信息或知识。
然而遗传算法的交叉和变异算子却相对固定,在求解问题时,可变的灵活程度较小。
这无疑对算法的通用性是有益的,但却忽视了问题的特征信息对求解问题时的辅助作用,特别是在求解一些复杂问题时,这种忽视所带来的损失往往就比较明显了。
实践也表明,仅仅使用遗传算法或者以其为代表的进化算法,在模仿人类智能处理事物的能力方面还远远不足,还必须更加深层次地挖掘与利用人类的智能资源。
从这一点讲,学习生物智能、开发、进而利用生物智能是进化算法乃至智能计算的一个永恒的话题。
所以,研究者力图将生命科学中的免疫概念引入到工程实践领域,借助其中的有关知识与理论并将其与已有的一些智能算法有机地结合起来,以建立新的进化理论与算法,来提高算法的整体性能。
基于这一思想,将免疫概念及其理论应用于遗传算法,在保留原算法优良特性的前提下,力图有选择、有目的地利用待求问题中的一些特征信息或知识来抑制其优化过程中出现的退化现象,这种算法称为免疫算法(ImmuneAlgorithm)IA。
下面将会给出算法的具体步骤,证明其全局收敛性,提出免疫疫苗的选择策略和免疫算子的构造方法,理论分析和对TSP问题的仿真结果表明免疫算法不仅是有效的而且也是可行的,并较好地解决了遗传算法中的退化问题。
1
边缘检测是数字图像处理中的一个基础且重要的概念,它用于识别图像中的边界,这些边界通常对应于物体的轮廓。
在硬件实现中,如使用VERILOG这种硬件描述语言(HDL),可以创建高效的边缘检测电路,这对于嵌入式系统、计算机视觉应用以及实时图像处理非常有用。
VERILOG是一种广泛使用的HDL,它允许工程师用类似于编程的语言来描述数字系统的逻辑功能。
通过VERILOG编写的代码可以在FPGA(现场可编程门阵列)或ASIC(应用专用集成电路)上实现,以硬件的形式执行特定的算法,如边缘检测。
边缘检测通常涉及一系计算图像像素的差分或梯度。
其中,最经典的算法之一是Sobel算子,它利用水平和垂直方向的一组滤波器对图像进行卷积,以找出强度变化的区域。
在VERILOG中实现Sobel算子,我们需要定义滤波器系数,并编写逻辑来计算像素邻域内的差分。
以下是可能的VERILOG代码结构:1.**模块定义**:定义一个名为“edge_detector”的模块,输入为原始图像的像素数据,输出为边缘检测后的结果。
可能还需要控制信号,如时钟和使能信号。
```verilogmoduleedge_detector(input[PIXEL_WIDTH-1:0]img_in,//输入图像像素outputreg[PIXEL_WIDTH-1:0]edge_out,//输出边缘像素inputclk,//时钟inputrst//重置信号);```2.**内部变量**:声明用于存储滤波器权重和中间结果的变量。
```verilogreg[PIXEL_WIDTH-1:0]horz_weight,vert_weight;//滤波器权重reg[PIXEL_WIDTH-1:0]horz_diff,vert_diff;//水平和垂直差分```3.**滤波器定义**:定义Sobel算子的水平和垂直滤波器权重。
```verilogparameterSOBEL_X={};//水平滤波器权重parameterSOBEL_Y={};//垂直滤波器权重```4.**计算差分**:在时钟的上升沿,对图像进行卷积并计算差分。
```verilogalways@(posedgeclk)beginif(!rst)beginedge_outTHRESHOLD)edge_out<='1;//达到阈值则认为是边缘,否则设为0end```6.**结束模块定义**:关闭模块。
```verilogendmodule```这个模块可以被综合到FPGA硬件中,实现高速、低延迟的边缘检测。
在实际应用中,可能还需要考虑图像的滚动缓冲、多级缓存和并行处理以提高效率。
VERILOG实现的边缘检测不仅涉及到图像处理的基本概念,还涵盖了数字逻辑设计、并行处理和实时系统设计等多个领域。
理解和实现这样的系统有助于提升硬件设计者在数字信号处理和嵌入式系统设计方面的技能。
2025/8/4 9:34:58 2.93MB verilog
1
本程序利用mpi实现矩阵并行相乘。
你需要安装mpich并配置好环境。
编译:mpiccMatrixmulti.c-oMatrixmulti运行:mpirun-np5./Matrixmulti;
5为进程数,可以更换
2025/8/2 16:37:54 7KB 矩阵mpi
1
并行计算课程设计,基于sse4的用java实现的电子相册,实现照片的淡入淡出
2025/8/2 0:56:03 15.06MB sse4
1
大规模并行处理器程序设计_中文.pdf大规模并行处理器程序设计_中文.pdf大规模并行处理器程序设计_中文.pdf大规模并行处理器程序设计_中文.pdf
2025/7/24 0:42:25 32.75MB 大规模并行 处理器 程序设计
1
PARDISO求解器可实现大规模稀疏矩阵的求解,具有非常好的计算效率与并行性,本文档简介了从PardisoProject.org上获得Pardiso并安装使用的步骤。
2025/7/11 2:44:55 24KB PARDISO
1
淘宝Fourinone2.0提供了一个4合1分布式框架和简单易用的编程API,实现对多台计算机CPU,内存,硬盘的统一利用,从而获取到强大计算能力去解决复杂问题。
Fourinone框架提供了一系列并行计算模式(农民工/包工头/职介绍/手工仓库)用于利用多机多核CPU的计算能力;
提供完整的分布式缓存和小型缓存用于利用多机内存能力;
提供像操作本地文件一样操作远程文件(访问,并行读写,拆分,排它,复制,解析,事务等)用于利用多机硬盘存储能力;
由于多计算机物理上独立,Fourinone框架也提供完整的分布式协同和锁以及简化MQ功能,用于实现多机的协作和通讯。
fourinone-2.05.28\fourinone2.0.................\............\config.xml.................\............\fourinone-2.05.28-src.jar.................\............\fourinone-2.05.28.jar.................\............\指南和demo.................\............\..........\MQdemo.................\............\..........\.......\MQdemo.txt.................\............\..........\.......\ParkServerDemo.java.................\............\..........\.......\Publisher.java.................\............\..........\.......\Receiver.java.................\............\..........\.......\Sender.java.................\............\..........\.......\Subscriber.java.................\............\..........\WordCount.................\............\..........\.........\inputdata.txt.................\............\..........\.........\ParkServerDemo.java.................\............\..........\.........\WordCount.txt.................\............\..........\.........\WordcountCT.java.................\............\..........\.........\WordcountWK.java.................\............\..........\分布式文件访问和操作demo.................\............\..........\........................\FttpBatchWriteReadDemo.java.................\............\..........\........................\FttpCopyDemo.java.................\............\..........\........................\FttpMulCopyDemo.java.................\............\..........\........................\FttpMulWriteReadDemo.java.................\............\..........\........................\FttpOperateDemo.java.................\............\..........\........................\FttpParseDemo.java.................\............\..........\........................\FttpRo
2025/7/8 8:19:18 382KB fourinone
1
GPU与MATLAB混合编程PDF书籍本书介绍CPU和MATLAB的联合编程方法,包括首先介绍了不使用GPU实现MATLAB加速的方法;
然后介绍了MATLAB和计算统一设备架(CUDA)配置通过分析进行zuiyou规划,以及利用c-mex进行CUDA编程;
接着介绍了MATLAB与并行计算工具箱和运用CUDA加速函数库;
最后给出计算机图形实例和CUDA转换实例。
2025/7/6 4:35:52 43.36MB GPU
1
Hadoop是大数据领域最流行的技术,但并非唯一。
还有很多其他技术可用于解决大数据问题。
除了ApacheHadoop外,另外9个大数据技术也是必须要了解的。
1.ApacheFlink2.ApacheSamza3.GoogleCloudDataFlow4.StreamSets5.TensorFlow6.ApacheNiFi7.Druid8.LinkedInWhereHows9.MicrosoftCognitiveServices:是一个高效、分布式、基于Java实现的通用大数据分析引擎,它具有分布式MapReduce一类平台的高效性、灵活性和扩展性以及并行数据库查询优化方案,它支持批量和基于流的
1
共 510 条记录 首页 上一页 下一页 尾页
在日常工作中,钉钉打卡成了我生活中不可或缺的一部分。然而,有时候这个看似简单的任务却给我带来了不少烦恼。 每天早晚,我总是得牢记打开钉钉应用,点击"工作台",再找到"考勤打卡"进行签到。有时候因为工作忙碌,会忘记打卡,导致考勤异常,影响当月的工作评价。而且,由于我使用的是苹果手机,有时候系统更新后,钉钉的某些功能会出现异常,使得打卡变得更加麻烦。 另外,我的家人使用的是安卓手机,他们也经常抱怨钉钉打卡的繁琐。尤其是对于那些不太熟悉手机操作的长辈来说,每次打卡都是一次挑战。他们总是担心自己会操作失误,导致打卡失败。 为了解决这些烦恼,我开始思考是否可以通过编写一个全自动化脚本来实现钉钉打卡。经过一段时间的摸索和学习,我终于成功编写出了一个适用于苹果和安卓系统的钉钉打卡脚本。
2024-04-09 15:03 15KB 钉钉 钉钉打卡