基于哈希的最近邻居搜索已在许多应用程序中变得有吸引力。
但是,在使用汉明距离排序时,散列中的量化通常会降低判别能力。
此外,对于大规模的视觉搜索,现有的散列方法不能直接支持对具有多个源的数据进行有效搜索,而文献表明自适应地合并来自不同源或视图的补充信息可以显着提高搜索性能。
为了解决这些问题,本文提出了一种新颖且通用的方法来构建具有多个视图的多个哈希表,并在按位和按表级别生成细粒度的排名结果。
对于每个哈希表,引入了查询自适应按位加权,以通过同时利用哈希函数的质量及其对最近邻居搜索的补充来减轻量化损失。
从表格的角度来看,针对不同的数据视图构建了多个哈希表作为联合索引,在该哈希表上,提出了特定于查询的排名融合,以通过散布在图表中对按位排名的所有结果进行排名。
在三个著名基准上进行图像搜索的综合实验表明,与最新方法相比,该方法在单表和多表搜索中可分别实现17.11%和20.28%的性能提升。
2024/8/29 18:15:06 896KB Locality-sensitive hashing; hash code
1
计算机视觉中的多视图几何第二版(英文)MultipleViewGeometryinComputerVision.2ndEdition.pdf
2024/7/5 10:43:48 9.89MB 计算机视觉 多视图几何
1
vc++单文档多视图例子,同一个视图分为多个视图,利用相关类,是初学者很好的范例
2024/6/29 17:56:23 42KB 单文档多视图
1
从一组校准的2D多视图图像中准确地重建3D几何形状是一种积极而有效的方法计算机视觉中具有挑战性的任务。
现有的多视图立体声方法通常在恢复方面表现不佳深凹且突出的结构,并且会遇到一些常见问题,例如收敛速度慢,对初始条件的敏感性以及对内存的高要求。
为了解决这些问题,我们建议广义重投影误差最小化的两阶段优化方法(TwGREM),其中提出了一种广义的重投影误差框架,以将立体和轮廓提示整合到一个统一的能量中功能。
为了使函数最小化,我们首先在3D体积网格上引入凸松弛可以使用变量拆分和Chambolle投影有效解决。
然后,得到的表面是参数化为三角形网格并使用表面演化进行精炼以获得高质量的3D重建。
我们使用几种最先进方法进行的比较实验表明,TwGREM的性能基于3D的重建在准确性和效率方面是最高的,尤其是对于具有光滑的纹理和稀疏的视点
2024/4/19 21:58:52 1.24MB 研究论文
1
基于增量式SfM实现多视图三维点云重建,完整的工程文件,内含所需图片,可直接运行。
环境:Win10+VS2015+OpenCV3.4+PLC1.8。
2024/2/5 19:41:41 60.51MB SfM三维重 PCL
1
能够画三维球,立方体,矩形等,建立三维坐标,多视图显示等
2024/1/6 1:14:08 2.19MB VC6.0 三维 画图
1
这个是用VC实现的单文档多视图的表现程序,希望对大家有用
2023/12/19 14:02:17 220KB MFC 单文档 多视图
1
本书全面介绍了近10年来发展的基于几何的计算机视觉计算方法及其数学基础。
除了上述内容外,其中多摄像机视图几何及其计算方法,值得读者关注。
这是因为当前计算机的性能价格比大大提高,使人们有条件在视觉系统中使用更多的摄像机,以利用冗余的信息,来换取系统对噪声的鲁棒性。
系统对噪声的鲁棒性一直是实用计算机视觉系统的瓶颈问题,解决该问题的可能的办法是:提高摄像机的分辨率、多摄像机方法和近年来大量引进的统计最优化鲁棒算法(本书许多章节也有描述)。
本书对我国专门从事计算机视觉研究的读者有较好的参考价值。
此外,从事相关数学领域研究的人士也值得一读。
2023/12/4 12:07:30 75.9MB 计算机视觉
1
在MVG(多视图几何)和机器学习领域,求解线性方程组几乎是所有算法的根本,本文旨在帮助读者搞懂矩阵分解与线性方程组的关系,并给出利用SVD求解线性方程组的实战代码。
本资源是博文"【动手学MVG】矩阵分解与线性方程组的关系,求解线性方程组实战代码"的完整工程。
博文链接:https://blog.csdn.net/a435262767/article/details/108774141
2023/11/2 19:13:07 842KB 线性方程组求解 SVD QR分解 矩阵分解
1
《计算机视觉中的多视图几何》匹配源代码,matlab中关于三维重建的源代码
2023/9/17 12:31:24 1.25MB matlab 三维重建
1
共 21 条记录 首页 上一页 下一页 尾页
在日常工作中,钉钉打卡成了我生活中不可或缺的一部分。然而,有时候这个看似简单的任务却给我带来了不少烦恼。 每天早晚,我总是得牢记打开钉钉应用,点击"工作台",再找到"考勤打卡"进行签到。有时候因为工作忙碌,会忘记打卡,导致考勤异常,影响当月的工作评价。而且,由于我使用的是苹果手机,有时候系统更新后,钉钉的某些功能会出现异常,使得打卡变得更加麻烦。 另外,我的家人使用的是安卓手机,他们也经常抱怨钉钉打卡的繁琐。尤其是对于那些不太熟悉手机操作的长辈来说,每次打卡都是一次挑战。他们总是担心自己会操作失误,导致打卡失败。 为了解决这些烦恼,我开始思考是否可以通过编写一个全自动化脚本来实现钉钉打卡。经过一段时间的摸索和学习,我终于成功编写出了一个适用于苹果和安卓系统的钉钉打卡脚本。
2024-04-09 15:03 15KB 钉钉 钉钉打卡