Cesium是一款强大的开源Javascript库,专门用于创建交互式的3D地球浏览器和虚拟地理空间应用程序。
在Cesium1.47版本中,用户可以利用其先进的WebGL技术来展示高精度的地形、卫星图像以及3D模型。
这个版本的发布可能预示着Cesium将更加注重商业化,官方网站启用com域名可能意味着即将引入付费服务或更专业的支持。
Cesium的核心功能包括:1.**实时3D渲染**:Cesium使用WebGL进行高性能的3D图形渲染,可以在任何现代浏览器中提供流畅的地球视图体验,无需插件。
2.**全球覆盖**:内置的全球地形和卫星影像数据允许用户查看地球的任意位置,且数据更新频繁,确保最新信息。
3.**丰富的API**:Cesium提供了详尽的JavascriptAPI,开发者可以通过这些接口创建交互式地图,添加标记、绘制路径、加载3D模型等。
4.**时间动态显示**:Cesium支持时间动态显示,可以用于回放历史轨迹或预测未来趋势,非常适合航空、航海和气象等领域。
5.**集成GIS数据**:Cesium能够与多种GIS数据格式兼容,如KML、GeoJSON、WMS等,方便导入和展示各种地理信息。
6.**3D模型支持**:通过glTF格式,Cesium可以加载和显示复杂的3D模型,如建筑物、车辆或地形特征,增强了场景的真实感。
7.**社区与资源**:Cesium有一个活跃的开发者社区,提供许多示例代码、教程和插件,帮助初学者快速上手。
在Cesium的官方教程中,你可能会学到如何:-**初始化场景**:设置视图、投影和场景的基本属性,如重力、光照等。
-**添加数据源**:如何加载地形、卫星影像、矢量数据以及3D模型到场景中。
-**控制交互**:实现平移、缩放、旋转等操作,以及添加控制面板和键盘快捷键。
-**创建动画**:使用时间滑块或时间差函数实现动态效果。
-**事件处理**:监听用户的交互事件,如点击、鼠标移动等,并作出响应。
-**性能优化**:理解如何有效地管理数据和图形渲染,以提高应用程序的性能。
-**自定义扩展**:开发自定义的Cesium组件,以满足特定需求。
学习Cesium1.47及其官方教程,对于WebGIS开发人员、地理信息科学家以及对3D地理空间应用感兴趣的开发者来说,是一个宝贵的机会。
随着可能的商业化进程,Cesium未来可能会提供更高级的服务和专业支持,但其开源的核心仍然会为社区提供强大的基础工具。
因此,尽早掌握Cesium的使用技巧,将有助于你在地理空间领域保持竞争优势。
2025/12/8 9:21:27 158.09MB Cesium
1
Cesium是一款强大的开源Javascript库,专门用于在Web浏览器中创建交互式的3D地球模型和地理空间应用程序。
这个压缩包文件“CesiumAPI中文文档”包含了关于Cesium开发的重要资源,特别是针对中文用户提供了详细的API文档,这对于理解和使用Cesium进行三维场景构建、地图渲染以及地理数据操作具有极大的帮助。
CesiumAPI是Cesium的核心,它提供了大量的类、方法和属性,允许开发者创建丰富的3D地球场景。
以下是一些关键的CesiumAPI知识点:1.**Viewer**:Cesium的主视图组件,负责渲染3D地球和管理其他Cesium对象。
通过创建`newCesium.Viewer('container')`实例,可以在指定的HTML元素容器中初始化一个观览器。
2.**EntityAPI**:用于创建表示地理空间对象的实体,如点、线、多边形、轨迹等。
你可以设置它们的位置、形状、颜色、标签等属性。
3.**PrimitivesAPI**:提供低级几何体的创建,如Box、Cylinder、Polygon等,可以用于创建自定义3D模型。
4.**GeographicCoordinateSystem(WGS84)**:Cesium默认使用全球标准坐标系统WGS84,用于表示地理位置。
5.**TimeDynamicData**:Cesium支持时间动态数据,例如动态轨迹、天气模型等,可以通过设置`TimeIntervalCollection`来实现随时间变化的效果。
6.**TerrainandImagery**:Cesium提供多种地形和影像数据源,如USGS的地形数据和各种卫星图像,可以叠加在地球上展示。
7.**Camera**:控制视角和导航,包括平移、旋转、缩放等操作,通过`viewer.camera`可以访问并操作相机。
8.**Scene**:Cesium的场景对象,包含所有可见的3D对象、地形、光照等。
你可以通过`viewer.scene`访问并设置场景属性,如光照模式、大气效果等。
9.**TasksAPI**:异步任务处理,如执行Javascript函数或Web服务请求,可以在后台线程中运行,避免阻塞主线程。
10.**AnimationandTimeline**:动画和时间线控件用于播放和控制时间动态数据,可以调整播放速度和时间范围。
11.**GlobeRendering**:Cesium能够实时渲染复杂的3D地球,包括地形起伏、纹理贴图、阴影效果等。
12.**DataSourceCollection**:管理多个数据源,如KML、GeoJSON、CZML等,方便地将不同格式的数据加载到Cesium中。
13.**InteractionsandEvents**:Cesium提供了丰富的事件处理机制,如鼠标点击、触摸手势等,可以监听和响应用户交互。
14.**PerformanceMonitoring**:Cesium提供性能监控工具,帮助开发者优化应用性能,确保在各种设备上流畅运行。
通过深入学习这个“CesiumAPI中文文档”,开发者可以更好地掌握Cesium的用法,创建出功能强大、视觉震撼的3D地理空间应用。
对于三维分享的爱好者和专业人士来说,这份文档无疑是一份宝贵的资源。
2025/12/8 9:15:20 5.56MB
1
本文详细介绍了CesiumEarth三维地形切片数据的制作过程。
首先说明了地形切片数据在三维地球中表现地表高低起伏的重要性,并推荐了地理空间数据云作为免费DEM数据的来源。
文章介绍了DEM原始数据格式(如tif、tiff、dem等)以及可用的切片工具,特别推荐了免费使用的CesiumLab。
随后分步骤讲解了CesiumLab地形切片的具体操作流程:从输入文件的选择和坐标参数设置,到处理参数的默认配置,再到输出文件的存储类型选择和目标路径指定。
最后解释了地形切片输出后的文件结构,指出系统会自动解析索引说明文件layer.json,用户只需选择地形路径即可添加图层。
整个过程清晰明了,为需要制作三维地形切片的用户提供了实用指导。
CesiumEarth是一个强大的三维地球可视化软件,广泛应用于地理信息系统和虚拟现实领域。
为了实现真实感的地形显示,三维地形切片制作是至关重要的环节。
地形切片可以展现地表高低起伏的细节,为用户提供一个生动的三维世界体验。
文章首先强调了地理空间数据的重要性,这些数据通常以DEM(数字高程模型)格式存在,如常见的tif、tiff、dem等格式。
地理空间数据云平台提供了一个获取免费DEM数据的途径。
接着,文章提到了切片工具的重要性,尤其是CesiumLab这个免费工具,它对于制作CesiumEarth所需的地形切片提供了极大的便利。
文章详细介绍了使用CesiumLab制作地形切片的流程。
第一步是准备输入文件,用户需要根据个人需求从地理空间数据云下载相应的DEM数据,并在CesiumLab中选择相应的文件。
之后,用户需要进行坐标参数的设置,确保切片能够正确地映射到地球表面上。
处理参数的默认配置提供了一个基础的起点,而用户可以根据实际情况进行调整。
输出文件的存储类型和目标路径是制作过程中需要注意的细节,确保输出文件的组织结构和存储位置符合用户的项目需求。
文章深入解释了制作完成后地形切片文件结构,这包括了各种地形数据文件和索引文件。
特别是layer.json文件,它作为一个索引文件,对各个切片文件的位置进行了说明,用户在添加图层时只需指定地形路径,系统将自动解析这个索引文件,从而完成地形的加载和显示。
整个文章提供了一个从数据获取、切片制作到地形加载的完整指导流程,对于那些想要深入研究CesiumEarth地形显示技术的开发者来说,文章中提供的信息是必不可少的。
通过这些知识,开发者能够更好地利用CesiumEarth构建出精确、细致的三维地形,大大增强了应用程序的真实感和用户体验。
对于软件开发人员而言,了解和掌握CesiumEarth地形切片制作技术不仅能够提升三维可视化项目的质量,而且能够拓宽在GIS和VR领域的应用范围。
CesiumLab等工具的使用降低了技术门槛,使得开发者能够更便捷地进行地理数据的处理和三维展示。
此外,通过实际操作,开发者还能够加深对地理数据格式、文件存储结构和数据处理流程的认识,从而在更广泛的地理信息系统项目中发挥更大的作用。
在CesiumEarth和其他三维可视化工具的帮助下,开发者得以创建出更加精确和美观的三维模型。
这些模型不仅可以用于地理探索,还能够应用于城市规划、环境监测、灾害预警等多个领域。
随着技术的进步,三维可视化工具和相关技术的应用场景还在不断扩展,对于开发者来说,深入掌握相关知识和技能显得尤为关键。
随着三维数据可视化技术的不断进步,对于高质量地形数据的需求也日益增长。
了解地形切片制作过程,掌握CesiumEarth的使用,对于那些致力于提供高质量三维地图服务和应用的开发者而言,是必不可少的基础技能。
通过这些技能,开发者能够为用户提供更加真实、直观的地理信息体验,推动相关技术在教育、科研和商业领域的创新应用。
文章详细介绍了CesiumEarth三维地形切片数据的制作过程,包括了数据的来源、格式、切片工具的使用、操作流程和文件结构的解析,为用户提供了清晰明了的实用指导。
这些内容对于准备进入三维可视化领域的开发者具有重要的参考价值,有助于他们更好地理解和掌握地形切片制作的技术细节。
2025/12/5 22:48:04 6KB 软件开发 源码
1
全球地形1kmDEM(数字高程模型)拼接数据是一个重要的地理信息系统(GIS)资源,它为各种地球科学、环境研究、城市规划、导航、灾害风险评估等领域提供了基础的地形信息。
DEM是一种数字形式的地形表示,它用等间距的网格记录地表的高度信息,每个网格点代表一个特定地点的海拔高度。
在提供的压缩包文件中,包含以下几个关键文件:1.**new.tif**:这是主要的DEM数据文件,以TIFF(TaggedImageFileFormat)格式存储。
TIFF是一种广泛用于地理空间数据的图像文件格式,能够容纳大量的地理元数据,并且支持多层和色彩深度。
在这个案例中,它包含了全球1km分辨率的地形高度信息。
2.**new.tif.ovr**:这是TIFF文件的覆盖层(Overviews)文件,用于快速访问大尺寸图像。
它包含了低分辨率版本的图像,使得在查看或处理大文件时可以提高效率,无需加载整个高分辨率图像。
3.**new.tfw**:这是TIFF文件的外部世界文件(WorldFile),记录了图像的地理坐标系统信息,包括比例尺、偏移值等,确保图像的像素与实地位置准确对应。
4.**new.tif.xml**:这是TIFF文件的XML元数据文件,包含了关于图像的详细信息,如投影信息、数据来源、创建日期、分辨率等。
这些信息对于正确理解和使用DEM数据至关重要。
5.**new.tif.aux.xml**:这是GDAL(GeospatialDataAbstractionLibrary)生成的辅助元数据文件,存储了关于TIFF文件的额外信息,例如图像的边界、未记录在TFW文件中的地理配准信息等。
使用这些数据,用户可以进行以下操作:-**地形分析**:计算坡度、坡向、山谷和山脊线等地形特征。
-**水文分析**:模拟水流动向,分析河流网络、洪水风险等。
-**可视模拟**:生成地形透视图,用于景观规划和设计。
-**气候建模**:地形对气候有显著影响,DEM数据可用于气候模型的输入。
-**GIS集成**:与其他地理数据叠加,进行土地利用规划、交通规划等。
为了处理这些数据,你需要GIS软件,如QGIS、ArcGIS或GRASSGIS,它们提供了导入、查看、分析和导出DEM数据的功能。
同时,了解基本的地理坐标系统和投影知识也很重要,因为不同的地理空间数据可能使用不同的坐标参考系统,正确匹配这些系统是确保数据分析准确性的前提。
掌握使用命令行工具如gdalinfo和gdal_translate进行数据转换和处理也是有益的。
2025/12/5 22:36:25 406.14MB GIS
1
本数据为2024年中国省市县行政区划矢量数据(含审图号,仅供地图可视化),该数据包含省界、市界、县界,坐标系为GCS_WGS_1984。
数据来源:国家地理信息公共服务平台天地图审图号:审图号:GS(2024)0650号注:1、数据更新时间:2024年1月2、该数据仅供地图可视化使用2024年中国的省市县行政区划矢量数据是地理信息系统(GIS)中非常重要的数据资源,它包含了中国所有省份、城市和县的行政界限信息,这些信息以矢量图形的形式展现,能够精确地在地图上绘制出各个行政区域的边界。
这类数据对于进行区域分析、资源规划、城市规划、交通规划等具有重要意义,尤其在公共管理和决策支持系统中,为管理者提供了直观的地理信息参考。
本数据集不仅覆盖了省级、市级和县级三个行政级别,而且按照国家的行政区划进行了详细划分,保证了数据的完整性和准确性。
使用GCS_WGS_1984坐标系统,这是国际上广泛使用的一种地理坐标系统,能够确保数据与其他国际地理信息系统数据的兼容性,方便进行全球范围内的地图可视化和数据整合。
数据的来源是国家地理信息公共服务平台——天地图,这是一个权威的地理信息数据服务平台,能够提供包括地图服务、位置服务、地理编码服务等多种形式的地理信息服务。
确保了数据的专业性和权威性。
在使用这些数据时,需要注意的是数据的使用目的。
根据数据描述中提到的“仅供地图可视化使用”,这意味着该数据集不得用于除地图可视化之外的其他目的,比如商业开发、出版印刷等。
此外,数据中包含了审图号GS(2024)0650号,这个审图号表示该数据已经通过了国家相关部门的审核和批准,可以在法律允许的范围内使用。
值得注意的是,数据更新时间是2024年1月,这保证了数据的时效性,反映了最新的行政区划调整情况。
这对于需要追踪最新行政区划变更的研究人员和相关工作人员来说尤为重要。
由于数据是以矢量形式存在,它比栅格数据具有更高的灵活性和可编辑性。
用户可以根据自己的需要进行拉伸、缩放、旋转等操作,而不会损失图像质量。
矢量数据还便于进行属性数据的附加和查询,可以通过属性信息(如地区名称、行政级别等)来对特定区域进行检索。
在实际应用中,这类行政区划矢量数据可以应用于多种GIS软件中,如ArcGIS、MapInfo、SuperMap等,也可以在Excel中进行数据管理和分析,尤其是当需要将行政区划数据与其他统计数据结合进行地理分析时。
用户可以根据需求将数据导入相应的GIS软件中,进行地图的绘制、分析和输出。
尽管压缩包文件的文件名称列表中只提供了一个名为“资料数据_444_first.zip”的文件,但可以推测该压缩包内包含了2024年中国省市县行政区划矢量数据的所有相关文件,可能包括了不同格式的矢量文件(如.shp、.mif等),以适应不同的GIS软件和应用环境。
用户在解压并使用这些数据之前,应当检查数据的完整性和可用性,并按照软件的要求进行数据格式转换或导入操作。
2024年中国省市县行政区划矢量数据集作为地理信息的重要组成部分,不仅具有权威性和时效性,而且在数据来源和使用许可方面也做了明确的规定。
这些数据对于进行地理空间分析和可视化具有重要的应用价值,有助于提高公共决策的科学性和准确性。
2025/12/5 0:03:37 551B excel
1
资源下载链接为:https://pan.quark.cn/s/3d8e22c21839"ocean_shp.zip"文件是一个包含地理信息数据的压缩包,其中涵盖了印度洋(Indian)、大西洋(Atlantic)和太平洋(Pacific)的地理边界数据,这些数据以ESRIShapefile格式存储。
Shapefile是一种广泛应用于地理空间矢量数据存储的标准格式,通常由多个相关文件组成,但主要以.shp后缀的文件命名。
这种格式在GIS(地理信息系统)领域极为常见,能够存储点、线和多边形等几何对象,并且每个对象都可能携带附加的属性信息。
在此情境下,每个大洋的shp文件描绘了相应的海洋边界,这些边界可能是依据国际认可的地理界限划分的。
这些shp文件可用于多种地理分析任务:一是地理裁剪,可将其他地理数据(如国家边界、气候数据或卫星图像)与大洋边界裁剪,提取仅限于大洋区域的数据;
二是可视化,在GIS软件中加载这些文件,可在地图上展示大洋边界,进行颜色填充或线条描绘,生成美观且信息丰富的地图;
三是空间分析,通过叠加其他数据,可开展距离计算、缓冲区分析、海域影响评估等;
四是数据集成,将shp文件与海洋流速、水温、盐度等数据结合,为海洋研究提供地理定位信息;
五是教育和展示,可用于教学或展示材料,帮助解释地球表面的海洋分布;
六是政策规划,这些边界数据在海洋资源管理、海上交通规划、环境保护等领域是重要的参考依据。
要使用这些shp文件,需要借助GIS软件,如QGIS、ArcGIS或MapInfo等。
在这些软件中,可以导入.shp文件,进行查看、编辑和分析。
此外,这些文件还可以通过编程语言(如Python的geopandas库或R的sf包)进行处理,便于实现自动化和定制化的工作流程。
"ocean_shp.zip"作为一
2025/12/4 23:56:50 272B 地理信息
1
【标题解析】本主题涉及的是一个特定类型的地理信息系统(GIS)数据,即"中国区域海底tif格式地形数据"。
tif格式,全称TaggedImageFileFormat,是一种常见的用于存储地理空间信息的图像文件格式,尤其适用于遥感和地形数据。
这种数据提供了中国区域内(包括南海)的海洋和陆地的地形高度信息。
【描述分析】描述中提到,提供的数据不仅包含海底地形,也包括了陆地部分的数据,这表明这份数据集是全面的,涵盖了整个中国的地表特征。
"数据是本人通过其它工具导出的"暗示了数据来源可能是经过处理的,可能来自卫星遥感、航空摄影或者其他GIS软件,比如ArcGIS或QGIS。
此外,"加载到osgearth中显示还可以"表明这些数据已经在osgEarth这个开源的三维地球可视化软件中进行了验证,可以被成功读取和展示,这意味着数据的格式正确且可用。
【标签解析】标签"海底地形"明确了数据的主要内容,这部分信息对于海洋研究、航海安全、海洋资源开发以及环境监测等具有重要意义。
"dem"是DigitalElevationModel的缩写,即数字高程模型,它是用数字形式表示地面高程的一种方法,常用于地形分析、洪水预测、气候变化研究等领域。
"南海"则指出了数据覆盖的具体海域,南海是中国四大海域之一,对中国的海洋权益和环境保护至关重要。
【文件名称列表】压缩包中的"dem.tif"是核心文件,代表了数字高程模型。
此文件包含了中国区域的地理坐标和对应的海拔高度值,每个像素代表了一个地理位置的海拔,通过解析这个文件,用户可以获取到精确的地形信息。
这份资源提供的是中国南海及周边地区的数字高程模型数据,可用于多种用途,如地图制作、环境分析、海洋科学研究等。
用户需使用支持tif格式的GIS软件来打开和分析这些数据,例如ArcGIS、QGIS或osgEarth等。
在使用时,需要注意数据的精度、投影方式以及单位等信息,以确保正确解读和应用。
同时,由于涉及到地理空间数据,使用者还需要遵守相关的法律法规,尊重数据的版权和使用限制。
2025/12/4 23:51:17 363.69MB
1
全球海洋和海域SHP矢量格式数据为地理信息系统(GIS)用户提供了一套详尽的海洋和海域矢量数据。
这些数据以SHP文件格式保存,即形状文件格式,是GIS中常用的一种矢量数据格式。
SHP文件格式由ESRI公司开发,能够描述地理要素的位置、形状和属性信息。
该数据集涵盖了全球范围内的海洋和海域地理信息,包括海岸线、海峡、海湾、岛屿等自然地理特征,以及可能包含的海洋边界、经济专属区、大陆架等政治和法律定义的地理界限。
数据集中的每一条记录通常包括特定地理要素的几何形状和与之相关的属性数据,如名称、位置坐标、面积、长度等信息。
goas_v01.shp文件包含了海洋和海域地理要素的几何形状,这些形状是通过点、线、面的集合来表示的。
例如,海岸线可能以一系列相连的点来表达,而海域边界则可能由一条或多条线构成。
形状文件格式支持多种几何类型,因此goas_v01.shp可以包含多种不同类型的地理要素。
goas_v01.shx文件是形状文件的索引文件,用来快速定位和访问形状文件中的记录,这对于处理大型数据集尤其重要。
它包含了一个记录位置和大小的索引表,使得GIS软件能够有效地读取和编辑数据。
goas_v01.prj文件提供了关于空间数据的投影信息。
它说明了数据是如何在地理空间中定位的,包括使用的坐标系统和地图投影方法。
这些信息对于确保数据在GIS软件中能够正确地与其他数据叠加和分析至关重要。
LICENSE_GOAS_v1.txt文件包含了关于该数据集使用的版权和许可信息。
在使用该数据集之前,用户需要阅读并遵守这些条款和条件,以确保合法合规地使用数据。
goas_v01.cpg文件是用来指定数据集中使用的字符编码格式的。
对于中文、日文或其他非英文字符集,正确的字符编码是至关重要的,以避免出现乱码或数据解读错误。
goas_v01.dbf文件包含了与形状文件中的地理要素相关的属性信息。
它是一个数据库文件,列出了每个要素的特定属性,比如名称、分类、位置坐标、面积等。
DBF文件格式由dBase公司创建,是一个老式但仍然广泛支持的文件格式,用以存储结构化数据。
由于涉及全球范围的海洋和海域,这套数据集能够为海洋学、海洋资源管理、海洋环境保护、海洋科学研究、航运路线规划等领域提供关键的地理参考信息。
同时,这套数据也有助于全球GIS用户在进行空间分析和制图时,对海洋和海域进行准确的地理定位和描绘。
2025/12/3 22:27:08 87.41MB 地图数据
1
在中国的地理信息系统(GIS)和测绘领域,坐标系的转换是一项重要的任务。
本文将深入探讨“经纬度与我国54、80大地坐标转换的小工具”所涉及的关键知识点。
我们要了解“54坐标系”和“80坐标系”的概念。
54坐标系,全称为1954年北京坐标系,是基于苏联1942年普尔科沃大地坐标系的一种坐标系统。
在20世纪50年代,中国主要采用这一坐标系进行测量工作。
而“80坐标系”,即1980西安大地坐标系,是中国在1978年全国天文大地网平差后建立的新坐标系统,它采用了国际地球自转服务(IERS)推荐的地极原点和地球参考椭球模型,更符合现代地理空间数据的需求。
经纬度是我们最常见的地理位置表示方式,由经度和纬度两个参数组成。
经度表示东西方向的位置,以本初子午线(通过英国格林尼治天文台的经线)为0度,向西至180度,向东至180度。
纬度则表示南北方向的位置,以赤道为0度,向北至90度为北极,向南至90度为南极。
54坐标系和80坐标系与经纬度之间的转换通常涉及到椭球参数、投影方法和坐标平移等多个步骤。
这两个坐标系都基于特定的椭球模型,54坐标系使用的是克拉索夫斯基椭球,80坐标系使用的是国际大地测量与地球物理联合会(IUGG)推荐的克拉克1866椭球。
由于地球不是一个完美的球体,而是椭球形状,因此不同的椭球模型会导致坐标有所不同。
转换过程一般包括以下步骤:1.**椭球参数转换**:每个坐标系都有自己的椭球参数,包括长半轴(a)和扁平率(f),需要根据这些参数调整经纬度坐标。
2.**坐标平移**:由于历史原因,54坐标系和80坐标系在原点上有差异,需要进行平移操作。
3.**投影转换**:由于地球表面是曲面,而地图通常是平面,所以需要将经纬度坐标通过特定的投影方法(如高斯-克吕格投影)转换为平面坐标。
4.**系数计算**:转换过程中会涉及一系列的数学公式和转换系数,确保从一个坐标系到另一个坐标系的准确转换。
这款名为“经纬度与我国54、80大地坐标转换的小工具”的软件,就是基于以上理论,提供了便捷的转换功能。
用户只需要输入经纬度坐标,程序会自动完成上述计算,给出对应的54或80坐标系结果。
这对于GIS工作者、测绘人员以及需要处理地理位置数据的用户来说,是一个非常实用的工具。
需要注意的是,随着现代GIS技术的发展,中国已经逐步推广使用更加精确的WGS84坐标系(世界大地坐标系)和CGCS2000(中国2000国家大地坐标系)。
CGCS2000基于最新的地球椭球模型,与WGS84兼容,更适合现代导航和定位需求。
不过,对于历史数据的处理,54和80坐标系的转换仍然具有重要价值。
总结起来,这个小工具帮助用户跨越了不同坐标系之间的鸿沟,简化了复杂的数学计算,提高了工作效率,体现了GIS技术在实际应用中的灵活性和实用性。
2025/9/22 20:20:50 117KB 54、80坐标系
1
用于空间数据处理和分析,是常见的地理空间分析应用软件
2025/9/5 14:53:18 22.66MB 地理空间分析 ESDA Geoda
1
共 37 条记录 首页 上一页 下一页 尾页
在日常工作中,钉钉打卡成了我生活中不可或缺的一部分。然而,有时候这个看似简单的任务却给我带来了不少烦恼。 每天早晚,我总是得牢记打开钉钉应用,点击"工作台",再找到"考勤打卡"进行签到。有时候因为工作忙碌,会忘记打卡,导致考勤异常,影响当月的工作评价。而且,由于我使用的是苹果手机,有时候系统更新后,钉钉的某些功能会出现异常,使得打卡变得更加麻烦。 另外,我的家人使用的是安卓手机,他们也经常抱怨钉钉打卡的繁琐。尤其是对于那些不太熟悉手机操作的长辈来说,每次打卡都是一次挑战。他们总是担心自己会操作失误,导致打卡失败。 为了解决这些烦恼,我开始思考是否可以通过编写一个全自动化脚本来实现钉钉打卡。经过一段时间的摸索和学习,我终于成功编写出了一个适用于苹果和安卓系统的钉钉打卡脚本。
2024-04-09 15:03 15KB 钉钉 钉钉打卡