本书针的读者是高校学生,科研工作者,图像处理爱好者。
对于这些人群,他们往往是带着具体的问题,在苦苦寻找解决方案。
为了一个小问题就让他们去学习C++这么深奥的语言几乎是不可能的。
而Python的悄然兴起给他们带来的希望,如果说C++是tex的话,那Python的易用性相当于word。
他们可以很快的看懂本书的所有代码,并可以学着使用它们来解决自己的问题,同时也能拓展自己的视野。
别人经常说Python不够快,但是对于上面的这些读者,我相信这不是问题,现在我们日常使用的PC机已经无比强大了,而且绝大多数情况下不会用到实时处理,更不会在嵌入式设备上使用。
因此这不是问题。
本书目录:目录I走进OpenCV101关于OpenCV-Python教程102在Windows上安装OpenCV-Python113在Fedora上安装OpenCV-Python12IIOpenCV中的Gui特性134图片134.1读入图像4.2显示图像4.3保存图像4.4总结一下5视频5.1用摄像头捕获视频5.2从文件中播放视频5.3保存视频6OpenCV中的绘图函数6.1画线6.2画矩形6.3画圆6.4画椭圆6.5画多边形6.6在图片上添加文字7把鼠标当画笔7.1简单演示7.2高级一点的示例8用滑动条做调色板8.1代码示例III核心操作9图像的基础操作9.1获取并修改像素值9.2获取图像属性9.3图像ROI9.4拆分及合并图像通道9.5为图像扩边(填充)10图像上的算术运算10.1图像加法10.2图像混合10.3按位运算11程序性能检测及优化11.1使用OpenCV检测程序效率11.2OpenCV中的默认优化11.3在IPython中检测程序效率11.4更多IPython的魔法命令11.5效率优化技术12OpenCV中的数学工具IVOpenCV中的图像处理13颜色空间转换5413.1转换颜色空间13.2物体跟踪13.3怎样找到要跟踪对象的HSV值?14几何变换14.1扩展缩放14.2平移14.3旋转14.4仿射变换14.5透视变换15图像阈值15.1简单阈值15.2自适应阈值15.3Otsu’s二值化15.4Otsu’s二值化是如何工作的?16图像平滑16.1平均16.2高斯模糊16.3中值模糊16.4双边滤波17形态学转换17.1腐蚀17.2膨胀17.3开运算17.4闭运算17.5形态学梯度17.6礼帽17.7黑帽17.8形态学操作之间的关系18图像梯度18.1Sobel算子和Scharr算子8718.2Laplacian算子19Canny边缘检测19.1原理19.1.1噪声去除19.1.2计算图像梯度19.1.3非极大值抑制19.1.4滞后阈值19.2OpenCV中的Canny边界检测20图像金字塔9420.1原理21OpenCV中的轮廓22直方图23图像变换24模板匹配25Hough直线变换26Hough圆环变换27分水岭算法图像分割28使用GrabCut算法进行交互式前景提取29理解图像特征30Harris角点检测31Shi-Tomasi角点检测&适合于跟踪的图像特征32介绍SIFT(Scale-InvariantFeatureTransform)33介绍SURF(Speeded-UpRobustFeatures)34角点检测的FAST算法35BRIEF(BinaryRobustIndependentElementaryFeatures)36.1OpenCV中的ORB算法37特征匹配38使用特征匹配和单应性查找对象39Meanshift和Camshift40.3OpenCV中的Lucas-Kanade光流41背景减除23841.1基础42摄像机标定43姿势估计44对极几何(EpipolarGeometry)45立体图像中的深度地图25945.1基础46K近邻(k-NearestNeighbour)47支持向量机48K值聚类49图像去噪50图像修补51使用Haar分类器进行面部检测
2025/12/10 3:40:07 4.85MB python opencv
1
经典的光流计算,用matlab编写的程序,希望对学习者有所帮助
2025/12/8 0:04:02 2KB matlab
1
光流场计算c语言源码opticalflow
2025/11/29 21:03:26 192KB 光流场计算 c语言 源码 optical
1
matlab实现的光流计算实例,实现图像中光流的计算,可用于计算人群量,物体跟踪等
2025/10/30 22:14:13 1.71MB 光流 Optical flow computation
1
利用LK光流法跟踪ORB特征点,利用solvePnP计算相机姿态,并控制opengl里的相机,在特征点处画AR物体。
2025/7/13 22:10:15 1.37MB opencv AR orb solvePnP
1
针对复杂运动背景中慢速小目标检测误检率高,实时性差等问题,提出了基于自适应阈值分割的慢速小目标检测算法。
首先计算连续两帧图像特征点的金字塔光流场,对光流场进行滤波,获取匹配特征点集合。
然后对图像运动背景进行建模,拟合投影模型参数,通过投影模型得到运动背景补偿图像,进行图像差分处理,获得差分图像。
最后迭代计算差分图像的自适应阈值,修正差分阈值,差分图像二值分割,检测出运动目标。
实验结果表明算法能够准确地检测出复杂背景中的慢速小目标,虚警率为2%,目标漏检率为2.6%,目标检测准确率95.4%,每帧图像目标检测时间为38ms,能够满足运动目标检测对实时性的要求。
1
主要功能是:打开图像彩色变灰阶邻域平均选择阈值腐蚀图像缩小启动摄像头恢复图像图像反相Gauss滤波自适应阈值法膨胀径向梯度打开AVI文件关闭当前窗口垂直镜像中值滤波全局阈值法开运算Canny算法视频解冻保存当前位图水平镜像Sobel算法外接矩形闭运算种子填充视频冻结最近文件180度旋转Laplace算法最小面积矩形形态学梯度金字塔图像分割多图像平均恢复原始图像30度旋转点集凸包顶帽变换椭圆曲线拟合关闭视频当前画面存盘亮度变换区域凸包波谷检测Snake原理选择分辨率退出图像直方图轮廓跟踪分水岭原理动态边缘检测直方图均衡化距离变换角点检测L_K光流跟踪
2025/4/28 10:16:08 7.98MB MFC opencv
1
经实验能出结果,在进行图像处理的前景检测时,能快速的检测出前景部分。
2025/4/8 19:29:09 3KB glf
1
我的毕业设计,自己用matlab编的关键帧提取的代码,调试通过,运行结果较理想。
与大家分享一下。
参考了光流发提取关键帧的代码,通过计算帧差的欧式距离,均值,方差等来提取关键帧。
2025/4/6 9:19:10 3.34MB 关键帧提取的matlab程序
1
运动目标检测在计算机视觉,图像处理,模式识别等多领域有着广泛的应用,经历了多年的研究和探索,针对运动目标检测的算法层出不穷,我们也积累了许多相关的算法。
但是我们还远没有完成对这个充满挑战的领域的探索。
本文对运动目标检测的技术进行了一定的研究,实现了基于canny算子和光流法相结合的运动目标检测方法。
为了能够准确把握这个行业的动态,本文首先介绍了运动目标检测的三大经典方法:背景相减法,帧差法,光流法。
同时比较了各自的优缺点。
帧差法具有易实现,计算量小的优点,但是却无法准确的检测出运动目标的完整轮廓。
光流法具有对不断运动的运动目标进行目标检测,但是它却有很大的计算量,同时对噪声也比较敏感。
为了可以对运动目标进行更好的识别,我们提出了边缘检测算子与光流法相结合的新方法。
在对多种边缘检测算子进行了了解之后,我们确定了利用canny算子进行边缘检测,并且结合光流法进行运动目标检测的方法。
在用canny算子检测出运动物体边缘之后,借助光流法计算出物体的运动场,同时结合最大类间方差法分辨出运动目标和背景,接着将物体的边缘信息和物体的运动信息进行融合,最后运用数学形态学的方法对结果进行处理,得到最终的运动目标。
通过实验,我们发现该方法既克服了帧差法不能准确检测出运动物体轮廓,和光流法抗噪声能力差的缺点,可以准确检测运动目标,对运动目标具有更好的检测效果
2025/3/25 14:37:01 15.94MB 运动目标检测 CANNY算子 光流 matlab
1
共 50 条记录 首页 上一页 下一页 尾页
在日常工作中,钉钉打卡成了我生活中不可或缺的一部分。然而,有时候这个看似简单的任务却给我带来了不少烦恼。 每天早晚,我总是得牢记打开钉钉应用,点击"工作台",再找到"考勤打卡"进行签到。有时候因为工作忙碌,会忘记打卡,导致考勤异常,影响当月的工作评价。而且,由于我使用的是苹果手机,有时候系统更新后,钉钉的某些功能会出现异常,使得打卡变得更加麻烦。 另外,我的家人使用的是安卓手机,他们也经常抱怨钉钉打卡的繁琐。尤其是对于那些不太熟悉手机操作的长辈来说,每次打卡都是一次挑战。他们总是担心自己会操作失误,导致打卡失败。 为了解决这些烦恼,我开始思考是否可以通过编写一个全自动化脚本来实现钉钉打卡。经过一段时间的摸索和学习,我终于成功编写出了一个适用于苹果和安卓系统的钉钉打卡脚本。
2024-04-09 15:03 15KB 钉钉 钉钉打卡