首页 开发技术 C     /    SIFTCPU+CUDA

SIFTCPU+CUDA

上传者: yj16xf | 上传时间:2016/8/16 4:11:47 | 文件大小:12.68MB | 文件类型:rar
SIFTCPU+CUDA
这是基于GPU-CUDA加速的SIFT算法。
用于图像范畴。
其中ShareMfileincludesSIFTCpucodeandSIFTCUDAcode,respectivelySiftCpu.cuandSiftCUDA.cu. 本软件ID:6772859

文件下载

资源详情

[{"title":"(79个子文件12.68MB)SIFTCPU+CUDA","children":[{"title":"SIFTCPU+CUDA","children":[{"title":"shareM","children":[{"title":"shareM.sdf <span style='color:#111;'>45.89MB</span>","children":null,"spread":false},{"title":"shareM","children":[{"title":"DogImage21.BMP <span style='color:#111;'>19.80KB</span>","children":null,"spread":false},{"title":"DogImage11.BMP <span style='color:#111;'>76.05KB</span>","children":null,"spread":false},{"title":"灰度图2.BMP <span style='color:#111;'>76.05KB</span>","children":null,"spread":false},{"title":"高斯模糊3.bmp <span style='color:#111;'>76.05KB</span>","children":null,"spread":false},{"title":"outImage31.BMP <span style='color:#111;'>5.74KB</span>","children":null,"spread":false},{"title":"outImage21.BMP <span style='color:#111;'>19.80KB</span>","children":null,"spread":false},{"title":"DogImage01.BMP <span style='color:#111;'>301.05KB</span>","children":null,"spread":false},{"title":"siftCuda.cu <span style='color:#111;'>37.30KB</span>","children":null,"spread":false},{"title":"shareM.vcxproj.filters <span style='color:#111;'>949B</span>","children":null,"spread":false},{"title":"outImage12.BMP <span style='color:#111;'>76.05KB</span>","children":null,"spread":false},{"title":"outImage10.BMP <span style='color:#111;'>76.05KB</span>","children":null,"spread":false},{"title":"outImage30.BMP <span style='color:#111;'>5.74KB</span>","children":null,"spread":false},{"title":"shareM.vcxproj <span style='color:#111;'>4.99KB</span>","children":null,"spread":false},{"title":"2.bmp <span style='color:#111;'>225.05KB</span>","children":null,"spread":false},{"title":"pixelValue.txt <span style='color:#111;'>3.19MB</span>","children":null,"spread":false},{"title":"outImage01.BMP <span style='color:#111;'>301.05KB</span>","children":null,"spread":false},{"title":"outImage11.BMP <span style='color:#111;'>76.05KB</span>","children":null,"spread":false},{"title":"shareM.vcxproj.user <span style='color:#111;'>143B</span>","children":null,"spread":false},{"title":"DogImage00.BMP <span style='color:#111;'>301.05KB</span>","children":null,"spread":false},{"title":"DogImage31.BMP <span style='color:#111;'>5.74KB</span>","children":null,"spread":false},{"title":"Debug","children":[{"title":"ScanMatrix.exe.embed.manifest.res <span style='color:#111;'>472B</span>","children":null,"spread":false},{"title":"ScanMatrix.Build.CppClean.log <span style='color:#111;'>2.02KB</span>","children":null,"spread":false},{"title":"mt.read.1.tlog <span style='color:#111;'>638B</span>","children":null,"spread":false},{"title":"rc.write.1.tlog <span style='color:#111;'>598B</span>","children":null,"spread":false},{"title":"shareM.Build.CppClean.log <span style='color:#111;'>1.56KB</span>","children":null,"spread":false},{"title":"rc.read.1.tlog <span style='color:#111;'>582B</span>","children":null,"spread":false},{"title":"siftCuda.cu.cache <span style='color:#111;'>1.03KB</span>","children":null,"spread":false},{"title":"link.8560-cvtres.write.1.tlog <span style='color:#111;'>2B</span>","children":null,"spread":false},{"title":"testCuda.cu.deps <span style='color:#111;'>21.41KB</span>","children":null,"spread":false},{"title":"SiftGPU.exe.embed.manifest <span style='color:#111;'>406B</span>","children":null,"spread":false},{"title":"SiftGPU_manifest.rc <span style='color:#111;'>204B</span>","children":null,"spread":false},{"title":"mt.command.1.tlog <span style='color:#111;'>780B</span>","children":null,"spread":false},{"title":"shareMatrix.cu.deps <span style='color:#111;'>12.30KB</span>","children":null,"spread":false},{"title":"link.9664.write.1.tlog <span style='color:#111;'>2B</span>","children":null,"spread":false},{"title":"link.9664.read.1.tlog <span style='color:#111;'>2B</span>","children":null,"spread":false},{"title":"siftCuda.cu.obj <span style='color:#111;'>367.95KB</span>","children":null,"spread":false},{"title":"SiftGPU.exe.intermediate.manifest <span style='color:#111;'>381B</span>","children":null,"spread":false},{"title":"link-cvtres.read.1.tlog <span style='color:#111;'>2B</span>","children":null,"spread":false},{"title":"SiftGPU.lastbuildstate <span style='color:#111;'>60B</span>","children":null,"spread":false},{"title":"ScanMatrix.lastbuildstate <span style='color:#111;'>60B</span>","children":null,"spread":false},{"title":"link.9664-cvtres.read.1.tlog <span style='color:#111;'>2B</span>","children":null,"spread":false},{"title":"shareM.lastbuildstate <span style='color:#111;'>60B</span>","children":null,"spread":false},{"title":"link.write.1.tlog <span style='color:#111;'>1.51KB</span>","children":null,"spread":false},{"title":"ScanMatrix.cu.deps <span style='color:#111;'>21.41KB</span>","children":null,"spread":false},{"title":"link-cvtres.write.1.tlog <span style='color:#111;'>2B</span>","children":null,"spread":false},{"title":"ScanMatrix.exe.embed.manifest <span style='color:#111;'>406B</span>","children":null,"spread":false},{"title":"ScanMatrix.exe.intermediate.manifest <span style='color:#111;'>381B</span>","children":null,"spread":false},{"title":"link.command.1.tlog <span style='color:#111;'>5.19KB</span>","children":null,"spread":false},{"title":"rc.command.1.tlog <span style='color:#111;'>1.05KB</span>","children":null,"spread":false},{"title":"link.read.1.tlog <span style='color:#111;'>9.21KB</span>","children":null,"spread":false},{"title":"link.9664-cvtres.write.1.tlog <span style='color:#111;'>2B</span>","children":null,"spread":false},{"title":"mt.write.1.tlog <span style='color:#111;'>638B</span>","children":null,"spread":false},{"title":"shareM.log <span style='color:#111;'>26.03KB</span>","children":null,"spread":false},{"title":"siftCuda.cu.deps <span style='color:#111;'>43.87KB</span>","children":null,"spread":false},{"title":"link.8560.read.1.tlog <span style='color:#111;'>2B</span>","children":null,"spread":false},{"title":"link.8560-cvtres.read.1.tlog <span style='color:#111;'>2B</span>","children":null,"spread":false},{"title":"SiftGPU.exe.embed.manifest.res <span style='color:#111;'>472B</span>","children":null,"spread":false},{"title":"link.8560.write.1.tlog <span style='color:#111;'>2B</span>","children":null,"spread":false},{"title":"ScanMatrix_manifest.rc <span style='color:#111;'>210B</span>","children":null,"spread":false}],"spread":false},{"title":"outImage02.BMP <span style='color:#111;'>301.05KB</span>","children":null,"spread":false},{"title":"sift算法—C实现.doc <span style='color:#111;'>925.50KB</span>","children":null,"spread":false},{"title":"siftCpu.cu <span style='color:#111;'>30.73KB</span>","children":null,"spread":false},{"title":"outImage00.BMP <span style='color:#111;'>301.05KB</span>","children":null,"spread":false},{"title":"vc100.pdb <span style='color:#111;'>1.37MB</span>","children":null,"spread":false},{"title":"outImage20.BMP <span style='color:#111;'>19.80KB</span>","children":null,"spread":false}],"spread":false},{"title":"SiftCUDA.suo <span style='color:#111;'>21.00KB</span>","children":null,"spread":false},{"title":"SiftCUDA.sln <span style='color:#111;'>886B</span>","children":null,"spread":false},{"title":"ipch","children":null,"spread":false},{"title":"Debug","children":[{"title":"SiftGPU.exe <span style='color:#111;'>111.50KB</span>","children":null,"spread":false},{"title":"ScanMatrix.exe <span style='color:#111;'>105.50KB</span>","children":null,"spread":false},{"title":"opencv.pdb <span style='color:#111;'>1.28MB</span>","children":null,"spread":false},{"title":"ScanMatrix.pdb <span style='color:#111;'>1.97MB</span>","children":null,"spread":false},{"title":"SiftGPU.ilk <span style='color:#111;'>576.90KB</span>","children":null,"spread":false},{"title":"opencv.ilk <span style='color:#111;'>431.06KB</span>","children":null,"spread":false},{"title":"ScanMatrix.ilk <span style='color:#111;'>934.26KB</span>","children":null,"spread":false},{"title":"opencv.exe <span style='color:#111;'>49.50KB</span>","children":null,"spread":false},{"title":"SiftGPU.pdb <span style='color:#111;'>1.78MB</span>","children":null,"spread":false}],"spread":true}],"spread":true},{"title":"readme.txt <span style='color:#111;'>92B</span>","children":null,"spread":false},{"title":"SiftGpu.suo <span style='color:#111;'>16.00KB</span>","children":null,"spread":false}],"spread":true}],"spread":true}]

评论信息

  • kyxldmk:
    有参考价值哦2018-12-30
  • kyxldmk:
    有参考价值哦2018-12-30
  • qq_26917597:
    为什么我编译的时候出现了这样的错误---》“发现意外的文件结束尾”。求指点2016-06-12
  • qq_26917597:
    为什么我编译的时候出现了这样的错误---》“发现意外的文件结束尾”。求指点2016-06-12
  • blackhark1:
    很好用!vs2010+opencv2.4.8改下配置就可以运行了!2015-12-02
  • blackhark1:
    很好用!vs2010+opencv2.4.8改下配置就可以运行了!2015-12-02
  • zhangxiao696:
    怎么运行不成功啊!2015-10-08
  • freedom-zhang:
    怎么运行不成功啊!2015-10-08
  • taotaolin93:
    不知道为什么没办法用vs打开工程。2015-06-04
  • taotao930418:
    不知道为什么没办法用vs打开工程。2015-06-04

免责申明

【好快吧下载】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【好快吧下载】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【好快吧下载】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,8686821#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明