首页 人工智能 机器学习     /    Python-用Keras实现的多种深度学习文本分类模型

Python-用Keras实现的多种深度学习文本分类模型

上传者: weixin_39841365 | 上传时间:2025/2/1 16:33:31 | 文件大小:1.35MB | 文件类型:ZIP
Python-用Keras实现的多种深度学习文本分类模型
在Keras中实现的文本分类模型,包括:FastText,TextCNN,TextRNN,TextBiRNN,TextAttBiRNN,HAN,RCNN,RCNNVariant等。
本软件ID:11520280

文件下载

资源详情

[{"title":"(38个子文件1.35MB)Python-用Keras实现的多种深度学习文本分类模型","children":[{"title":"TextClassification-Keras-master","children":[{"title":".gitignore <span style='color:#111;'>18B</span>","children":null,"spread":false},{"title":"model","children":[{"title":"TextRNN","children":[{"title":"main.py <span style='color:#111;'>1.10KB</span>","children":null,"spread":false},{"title":"text_rnn.py <span style='color:#111;'>837B</span>","children":null,"spread":false}],"spread":true},{"title":"TextAttBiRNN","children":[{"title":"text_att_birnn.py <span style='color:#111;'>966B</span>","children":null,"spread":false},{"title":"attention.py <span style='color:#111;'>3.66KB</span>","children":null,"spread":false},{"title":"main.py <span style='color:#111;'>1.11KB</span>","children":null,"spread":false}],"spread":true},{"title":"HAN","children":[{"title":"han.py <span style='color:#111;'>1.44KB</span>","children":null,"spread":false},{"title":"attention.py <span style='color:#111;'>3.66KB</span>","children":null,"spread":false},{"title":"main.py <span style='color:#111;'>1.33KB</span>","children":null,"spread":false}],"spread":true},{"title":"RCNN","children":[{"title":"rcnn.py <span style='color:#111;'>1.48KB</span>","children":null,"spread":false},{"title":"main.py <span style='color:#111;'>1.92KB</span>","children":null,"spread":false}],"spread":true},{"title":"RCNNVariant","children":[{"title":"rcnn_variant.py <span style='color:#111;'>1.62KB</span>","children":null,"spread":false},{"title":"main.py <span style='color:#111;'>1.11KB</span>","children":null,"spread":false}],"spread":true},{"title":"TextCNN","children":[{"title":"text_cnn.py <span style='color:#111;'>1.09KB</span>","children":null,"spread":false},{"title":"main.py <span style='color:#111;'>1.10KB</span>","children":null,"spread":false}],"spread":true},{"title":"FastText","children":[{"title":"fast_text.py <span style='color:#111;'>837B</span>","children":null,"spread":false},{"title":"main.py <span style='color:#111;'>4.04KB</span>","children":null,"spread":false}],"spread":true},{"title":"TextBiRNN","children":[{"title":"text_birnn.py <span style='color:#111;'>869B</span>","children":null,"spread":false},{"title":"main.py <span style='color:#111;'>1.10KB</span>","children":null,"spread":false}],"spread":true}],"spread":true},{"title":"LICENCE <span style='color:#111;'>1.04KB</span>","children":null,"spread":false},{"title":"README-ZH.md <span style='color:#111;'>9.01KB</span>","children":null,"spread":false},{"title":"README.md <span style='color:#111;'>9.40KB</span>","children":null,"spread":false},{"title":"image","children":[{"title":"TextRNN_network_structure.png <span style='color:#111;'>15.41KB</span>","children":null,"spread":false},{"title":"FeedForwardAttention.png <span style='color:#111;'>111.02KB</span>","children":null,"spread":false},{"title":"TextBiRNN_network_structure.png <span style='color:#111;'>15.91KB</span>","children":null,"spread":false},{"title":"HAN.png <span style='color:#111;'>66.97KB</span>","children":null,"spread":false},{"title":"FastText_network_structure.png <span style='color:#111;'>15.23KB</span>","children":null,"spread":false},{"title":"TextCNN_network_structure.png <span style='color:#111;'>25.84KB</span>","children":null,"spread":false},{"title":"RCNNVariant_network_structure.png <span style='color:#111;'>36.53KB</span>","children":null,"spread":false},{"title":"RCNN.png <span style='color:#111;'>171.05KB</span>","children":null,"spread":false},{"title":"TextCNN.png <span style='color:#111;'>96.88KB</span>","children":null,"spread":false},{"title":"FeedForwardAttetion_fomular.png <span style='color:#111;'>1.64KB</span>","children":null,"spread":false},{"title":"HAN_network_structure.png <span style='color:#111;'>32.32KB</span>","children":null,"spread":false},{"title":"FastText.png <span style='color:#111;'>44.00KB</span>","children":null,"spread":false},{"title":"RCNN_network_structure.png <span style='color:#111;'>26.34KB</span>","children":null,"spread":false},{"title":"TextAttBiRNN_network_structure.png <span style='color:#111;'>18.87KB</span>","children":null,"spread":false},{"title":"figures.pptx <span style='color:#111;'>694.32KB</span>","children":null,"spread":false},{"title":"TextRNN.png <span style='color:#111;'>40.26KB</span>","children":null,"spread":false}],"spread":false}],"spread":true}],"spread":true}]

评论信息

免责申明

【好快吧下载】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【好快吧下载】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【好快吧下载】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,8686821#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明