[{"title":"(24个子文件1.64MB)基于蒙特卡洛树搜索和策略价值网络(强化学习)的AI五子棋算法","children":[{"title":"myGomoku","children":[{"title":"game.py <span style='color:#111;'>7.94KB</span>","children":null,"spread":false},{"title":"train.py <span style='color:#111;'>8.58KB</span>","children":null,"spread":false},{"title":"__pycache__","children":[{"title":"mcts_alphaZero.cpython-37.pyc <span style='color:#111;'>7.35KB</span>","children":null,"spread":false},{"title":"game.cpython-37.pyc <span style='color:#111;'>6.47KB</span>","children":null,"spread":false},{"title":"mcts_pure.cpython-37.pyc <span style='color:#111;'>7.55KB</span>","children":null,"spread":false},{"title":"policy_value_net_numpy.cpython-37.pyc <span style='color:#111;'>3.63KB</span>","children":null,"spread":false}],"spread":true},{"title":"mcts_pure.py <span style='color:#111;'>7.01KB</span>","children":null,"spread":false},{"title":"best_policy_8_8_5.model <span style='color:#111;'>465.79KB</span>","children":null,"spread":false},{"title":"policy_value_net_numpy.py <span style='color:#111;'>3.93KB</span>","children":null,"spread":false},{"title":".idea","children":[{"title":"AlphaZero_Gomoku-master.iml <span style='color:#111;'>467B</span>","children":null,"spread":false},{"title":"misc.xml <span style='color:#111;'>301B</span>","children":null,"spread":false},{"title":"modules.xml <span style='color:#111;'>298B</span>","children":null,"spread":false},{"title":"workspace.xml <span style='color:#111;'>14.79KB</span>","children":null,"spread":false},{"title":"inspectionProfiles","children":[{"title":"Project_Default.xml <span style='color:#111;'>562B</span>","children":null,"spread":false}],"spread":true}],"spread":true},{"title":"policy_value_net.py <span style='color:#111;'>5.00KB</span>","children":null,"spread":false},{"title":"best_policy_8_8_5.model2 <span style='color:#111;'>465.79KB</span>","children":null,"spread":false},{"title":"human_play.py <span style='color:#111;'>2.79KB</span>","children":null,"spread":false},{"title":"policy_value_net_tensorflow.py <span style='color:#111;'>6.52KB</span>","children":null,"spread":false},{"title":"best_policy_6_6_4.model2 <span style='color:#111;'>407.93KB</span>","children":null,"spread":false},{"title":"policy_value_net_keras.py <span style='color:#111;'>4.77KB</span>","children":null,"spread":false},{"title":"best_policy_6_6_4.model <span style='color:#111;'>407.93KB</span>","children":null,"spread":false},{"title":"README.md <span style='color:#111;'>2.50KB</span>","children":null,"spread":false},{"title":"mcts_alphaZero.py <span style='color:#111;'>7.65KB</span>","children":null,"spread":false},{"title":"policy_value_net_pytorch.py <span style='color:#111;'>6.13KB</span>","children":null,"spread":false}],"spread":false}],"spread":true}]