首页 人工智能 机器学习     /    机械学习算法,包含随机森林,决策树,SVM,CNN等十几种算法的程序包

机械学习算法,包含随机森林,决策树,SVM,CNN等十几种算法的程序包

上传者: u011358529 | 上传时间:2016/8/4 23:52:07 | 文件大小:785KB | 文件类型:zip
机械学习算法,包含随机森林,决策树,SVM,CNN等十几种算法的程序包
机械学习算法,包含随机森林,决策树,SVM,CNN等十几种算法的程序包 本软件ID:10379796

文件下载

资源详情

[{"title":"(63个子文件785KB)机器学习算法,包含随机森林,决策树,SVM,CNN等十几种算法的程序包","children":[{"title":"机器学习算法Python-Machine-Learning-Algorithm-master","children":[{"title":"Chapter_6BP","children":[{"title":"bp_test.py <span style='color:#111;'>2.85KB</span>","children":null,"spread":false},{"title":"bp_train.py <span style='color:#111;'>7.94KB</span>","children":null,"spread":false},{"title":"data.txt <span style='color:#111;'>14.70KB</span>","children":null,"spread":false}],"spread":true},{"title":"Chapter_7LinearRegression","children":[{"title":"local_weight_regression.py <span style='color:#111;'>934B</span>","children":null,"spread":false},{"title":"data_test.txt <span style='color:#111;'>2.93KB</span>","children":null,"spread":false},{"title":"linear_regression_train.py <span style='color:#111;'>4.17KB</span>","children":null,"spread":false},{"title":"data.txt <span style='color:#111;'>7.08KB</span>","children":null,"spread":false},{"title":"linear_regression_test.py <span style='color:#111;'>1.61KB</span>","children":null,"spread":false}],"spread":true},{"title":"Chapter_1LogisticRegression","children":[{"title":"lr_train.py <span style='color:#111;'>2.84KB</span>","children":null,"spread":false},{"title":"lr_test.py <span style='color:#111;'>2.36KB</span>","children":null,"spread":false},{"title":"README.md <span style='color:#111;'>32B</span>","children":null,"spread":false},{"title":"test_data <span style='color:#111;'>6.69KB</span>","children":null,"spread":false},{"title":"data.txt <span style='color:#111;'>7.08KB</span>","children":null,"spread":false}],"spread":true},{"title":"Chapter_8RidgeRegression","children":[{"title":"ridge_regression_train.py <span style='color:#111;'>6.01KB</span>","children":null,"spread":false},{"title":"data_test.txt <span style='color:#111;'>6.53KB</span>","children":null,"spread":false},{"title":"data.txt <span style='color:#111;'>9.83KB</span>","children":null,"spread":false},{"title":"ridge_regression_test.py <span style='color:#111;'>1.79KB</span>","children":null,"spread":false}],"spread":true},{"title":"Chapter_4SVM","children":[{"title":"svm_train.py <span style='color:#111;'>2.45KB</span>","children":null,"spread":false},{"title":"svm_test.py <span style='color:#111;'>3.45KB</span>","children":null,"spread":false},{"title":"svm.py <span style='color:#111;'>12.02KB</span>","children":null,"spread":false},{"title":"__pycache__","children":[{"title":"svm.cpython-36.pyc <span style='color:#111;'>6.58KB</span>","children":null,"spread":false}],"spread":true},{"title":"heart_scale <span style='color:#111;'>27.02KB</span>","children":null,"spread":false},{"title":"model_file <span style='color:#111;'>605.97KB</span>","children":null,"spread":false},{"title":"svm_test_data <span style='color:#111;'>6.72KB</span>","children":null,"spread":false},{"title":"result <span style='color:#111;'>320B</span>","children":null,"spread":false}],"spread":true},{"title":"Chapter_11MeanShift","children":[{"title":"mean_shift.py <span style='color:#111;'>5.49KB</span>","children":null,"spread":false},{"title":"data <span style='color:#111;'>2.93KB</span>","children":null,"spread":false}],"spread":true},{"title":"Chapter_2SoftmaxRegression","children":[{"title":"SoftInput.txt <span style='color:#111;'>3.06KB</span>","children":null,"spread":false},{"title":"softmax_regression_test.py <span style='color:#111;'>2.22KB</span>","children":null,"spread":false},{"title":"softmax_regression_train.py <span style='color:#111;'>2.94KB</span>","children":null,"spread":false}],"spread":true},{"title":"Chapter_15MatrixFactorization","children":[{"title":"mf.py <span style='color:#111;'>4.22KB</span>","children":null,"spread":false},{"title":"nmf.py <span style='color:#111;'>1.68KB</span>","children":null,"spread":false},{"title":"data.txt <span style='color:#111;'>50B</span>","children":null,"spread":false}],"spread":true},{"title":"Chapter_13LabelPropagation","children":[{"title":"cd_data.txt <span style='color:#111;'>131B</span>","children":null,"spread":false},{"title":"lb.py <span style='color:#111;'>4.25KB</span>","children":null,"spread":false}],"spread":true},{"title":"Chapter_10KMeans","children":[{"title":"KMeans.py <span style='color:#111;'>4.18KB</span>","children":null,"spread":false},{"title":"KMeanspp.py <span style='color:#111;'>2.68KB</span>","children":null,"spread":false},{"title":"data.txt <span style='color:#111;'>2.73KB</span>","children":null,"spread":false}],"spread":true},{"title":"Chapter_9CART","children":[{"title":"train_cart.py <span style='color:#111;'>5.48KB</span>","children":null,"spread":false},{"title":"sine.txt <span style='color:#111;'>3.59KB</span>","children":null,"spread":false},{"title":"test_cart.py <span style='color:#111;'>1.95KB</span>","children":null,"spread":false}],"spread":true},{"title":"README.md <span style='color:#111;'>4.15KB</span>","children":null,"spread":false},{"title":"Chapter12_DBSCAN","children":[{"title":"data.txt <span style='color:#111;'>1.48KB</span>","children":null,"spread":false},{"title":"dbscan.py <span style='color:#111;'>4.52KB</span>","children":null,"spread":false}],"spread":true},{"title":"Chapter_14CollaborativeFiltering","children":[{"title":"item_based_recommend.py <span style='color:#111;'>2.33KB</span>","children":null,"spread":false},{"title":"user_based_recommend.py <span style='color:#111;'>3.65KB</span>","children":null,"spread":false},{"title":"data.txt <span style='color:#111;'>50B</span>","children":null,"spread":false}],"spread":false},{"title":"Chapter_5RandomForest","children":[{"title":"result_file <span style='color:#111;'>231.19KB</span>","children":null,"spread":false},{"title":"test_data.txt <span style='color:#111;'>69.00KB</span>","children":null,"spread":false},{"title":"feature_file <span style='color:#111;'>250B</span>","children":null,"spread":false},{"title":"tree.py <span style='color:#111;'>5.42KB</span>","children":null,"spread":false},{"title":"random_forests_train.py <span style='color:#111;'>6.34KB</span>","children":null,"spread":false},{"title":"final_result <span style='color:#111;'>81.55KB</span>","children":null,"spread":false},{"title":"__pycache__","children":[{"title":"tree.cpython-36.pyc <span style='color:#111;'>3.04KB</span>","children":null,"spread":false},{"title":"random_forests_train.cpython-36.pyc <span style='color:#111;'>4.00KB</span>","children":null,"spread":false}],"spread":false},{"title":"data.txt <span style='color:#111;'>14.47KB</span>","children":null,"spread":false},{"title":"random_forests_test.py <span style='color:#111;'>3.31KB</span>","children":null,"spread":false}],"spread":false},{"title":"Chapter_3FactorizationMachine","children":[{"title":"test_data.txt <span style='color:#111;'>7.05KB</span>","children":null,"spread":false},{"title":"FM_test.py <span style='color:#111;'>1.77KB</span>","children":null,"spread":false},{"title":"FM_train.py <span style='color:#111;'>5.83KB</span>","children":null,"spread":false},{"title":"data.txt <span style='color:#111;'>7.45KB</span>","children":null,"spread":false}],"spread":false},{"title":"Chapter_16PersonalRank","children":[{"title":"personal_rank.py <span style='color:#111;'>3.19KB</span>","children":null,"spread":false},{"title":"data.txt <span style='color:#111;'>50B</span>","children":null,"spread":false}],"spread":false}],"spread":false}],"spread":true}]

评论信息

免责申明

【好快吧下载】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【好快吧下载】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【好快吧下载】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,8686821#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明