首页 人工智能 机器学习     /    机械学习分类算法阐发及基于Python的实现

机械学习分类算法阐发及基于Python的实现

上传者: scoefield | 上传时间:2023/5/11 15:09:04 | 文件大小:217KB | 文件类型:zip
机械学习分类算法阐发及基于Python的实现
自己大四快毕业了,行使暑假的功夫把毕业方案《机械学习分类算法阐发及基于Python的实现》做了。
该资源是用Python实现机械学习分类算法的代码以及一些测试数据,如你感应有需要的话,可自行下载参考。
本软件ID:10253901

文件下载

资源详情

[{"title":"(47个子文件217KB)机器学习分类算法分析及基于Python的实现","children":[{"title":"mysystempage","children":[{"title":"svmSmo1.py <span style='color:#111;'>2.28KB</span>","children":null,"spread":false},{"title":"decideTree3.py <span style='color:#111;'>13.36KB</span>","children":null,"spread":false},{"title":"globalmodel.py <span style='color:#111;'>875B</span>","children":null,"spread":false},{"title":"svmSmo3.py <span style='color:#111;'>12.84KB</span>","children":null,"spread":false},{"title":"knnHelen2.py <span style='color:#111;'>5.96KB</span>","children":null,"spread":false},{"title":"linearRegression2.py <span style='color:#111;'>2.27KB</span>","children":null,"spread":false},{"title":"knnHelen3.py <span style='color:#111;'>3.26KB</span>","children":null,"spread":false},{"title":"svmSmo2.py <span style='color:#111;'>7.18KB</span>","children":null,"spread":false},{"title":"__init__.py <span style='color:#111;'>117B</span>","children":null,"spread":false},{"title":"knnHelen1.py <span style='color:#111;'>3.44KB</span>","children":null,"spread":false},{"title":"mysystemdata","children":[{"title":"lineRegressionData.xls <span style='color:#111;'>17.50KB</span>","children":null,"spread":false},{"title":"hnust.ico <span style='color:#111;'>1.12KB</span>","children":null,"spread":false},{"title":"lineRegressionData.txt <span style='color:#111;'>5.47KB</span>","children":null,"spread":false},{"title":"image","children":[{"title":"svm.png <span style='color:#111;'>10.45KB</span>","children":null,"spread":false},{"title":"pythonlogo.png <span style='color:#111;'>41.02KB</span>","children":null,"spread":false},{"title":"dectree.png <span style='color:#111;'>27.41KB</span>","children":null,"spread":false},{"title":"lineRegression.png <span style='color:#111;'>11.07KB</span>","children":null,"spread":false},{"title":"nbayes.png <span style='color:#111;'>21.30KB</span>","children":null,"spread":false},{"title":"knn.png <span style='color:#111;'>10.27KB</span>","children":null,"spread":false}],"spread":false},{"title":"knnHelenData.txt <span style='color:#111;'>34.89KB</span>","children":null,"spread":false},{"title":"svmTestData.txt <span style='color:#111;'>2.15KB</span>","children":null,"spread":false}],"spread":true},{"title":"nbayesSFilter1.py <span style='color:#111;'>1.54KB</span>","children":null,"spread":false},{"title":"linearRegression4.py <span style='color:#111;'>5.32KB</span>","children":null,"spread":false},{"title":"mySystem.py <span style='color:#111;'>16.88KB</span>","children":null,"spread":false},{"title":"__pycache__","children":[{"title":"mySystem.cpython-36.pyc <span style='color:#111;'>10.27KB</span>","children":null,"spread":false},{"title":"decideTree1.cpython-36.pyc <span style='color:#111;'>2.05KB</span>","children":null,"spread":false},{"title":"knnHelen1.cpython-36.pyc <span style='color:#111;'>2.08KB</span>","children":null,"spread":false},{"title":"decideTree3.cpython-36.pyc <span style='color:#111;'>5.66KB</span>","children":null,"spread":false},{"title":"nbayesSFilter2.cpython-36.pyc <span style='color:#111;'>2.48KB</span>","children":null,"spread":false},{"title":"linearRegression4.cpython-36.pyc <span style='color:#111;'>4.32KB</span>","children":null,"spread":false},{"title":"knnHelen2.cpython-36.pyc <span style='color:#111;'>3.11KB</span>","children":null,"spread":false},{"title":"svmSmo1.cpython-36.pyc <span style='color:#111;'>1.63KB</span>","children":null,"spread":false},{"title":"knnHelen3.cpython-36.pyc <span style='color:#111;'>1.66KB</span>","children":null,"spread":false},{"title":"svmSmo3.cpython-36.pyc <span style='color:#111;'>8.44KB</span>","children":null,"spread":false},{"title":"globalmodel.cpython-36.pyc <span style='color:#111;'>444B</span>","children":null,"spread":false},{"title":"linearRegression1.cpython-36.pyc <span style='color:#111;'>1.82KB</span>","children":null,"spread":false},{"title":"decideTree2.cpython-36.pyc <span style='color:#111;'>2.40KB</span>","children":null,"spread":false},{"title":"__init__.cpython-36.pyc <span style='color:#111;'>232B</span>","children":null,"spread":false},{"title":"nbayesSFilter1.cpython-36.pyc <span style='color:#111;'>1.22KB</span>","children":null,"spread":false},{"title":"nbayesSFilter3.cpython-36.pyc <span style='color:#111;'>3.14KB</span>","children":null,"spread":false},{"title":"svmSmo2.cpython-36.pyc <span style='color:#111;'>4.22KB</span>","children":null,"spread":false},{"title":"linearRegression2.cpython-36.pyc <span style='color:#111;'>2.04KB</span>","children":null,"spread":false}],"spread":false},{"title":"decideTree2.py <span style='color:#111;'>5.23KB</span>","children":null,"spread":false},{"title":"decideTree1.py <span style='color:#111;'>3.42KB</span>","children":null,"spread":false},{"title":"nbayesSFilter2.py <span style='color:#111;'>5.31KB</span>","children":null,"spread":false},{"title":"nbayesSFilter3.py <span style='color:#111;'>5.24KB</span>","children":null,"spread":false},{"title":"linearRegression1.py <span style='color:#111;'>2.16KB</span>","children":null,"spread":false}],"spread":false}],"spread":true}]

评论信息

  • zwszws:
    非常实用,利于提高和理解2021-08-26

免责申明

【好快吧下载】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【好快吧下载】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【好快吧下载】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,8686821#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明