首页 人工智能 机器学习     /    decisiontree决策树在adult数据集上的实现

decisiontree决策树在adult数据集上的实现

上传者: nicksunyy | 上传时间:2025/2/7 11:11:17 | 文件大小:2.52MB | 文件类型:rar
decisiontree决策树在adult数据集上的实现
决策树代码实现,参考机器学习实战,数据集采用的是adult数据集,增加了数据清洗,该决策树是随机实现的,增加了过拟合的剪枝。
本软件ID:10737447

文件下载

资源详情

[{"title":"(38个子文件2.52MB)decisiontree决策树在adult数据集上的实现","children":[{"title":"decisionTree","children":[{"title":"discretization_adult_data_all.csv <span style='color:#111;'>2.84MB</span>","children":null,"spread":false},{"title":"clean_adult_data_all.csv <span style='color:#111;'>2.90MB</span>","children":null,"spread":false},{"title":"data_discretization.py <span style='color:#111;'>5.56KB</span>","children":null,"spread":false},{"title":"clean_adult_test_all.csv <span style='color:#111;'>1.54MB</span>","children":null,"spread":false},{"title":"adult.data <span style='color:#111;'>3.79MB</span>","children":null,"spread":false},{"title":"decisionTreeAnalysis.py <span style='color:#111;'>632B</span>","children":null,"spread":false},{"title":"data_cleaning_bak.py <span style='color:#111;'>14.25KB</span>","children":null,"spread":false},{"title":"post_pruning.py <span style='color:#111;'>5.70KB</span>","children":null,"spread":false},{"title":"data_cleaning.py <span style='color:#111;'>12.28KB</span>","children":null,"spread":false},{"title":"no_pruning_trees.py <span style='color:#111;'>4.73KB</span>","children":null,"spread":false},{"title":"adult_test_all.csv <span style='color:#111;'>1.85MB</span>","children":null,"spread":false},{"title":"__pycache__","children":[{"title":"treePlotter.cpython-35.pyc <span style='color:#111;'>3.00KB</span>","children":null,"spread":false}],"spread":true},{"title":"adult_data_all.csv <span style='color:#111;'>3.39MB</span>","children":null,"spread":false},{"title":"decisiontree.docx <span style='color:#111;'>17.20KB</span>","children":null,"spread":false},{"title":"post_pruning_bak.py <span style='color:#111;'>5.63KB</span>","children":null,"spread":false},{"title":"adult.test <span style='color:#111;'>1.91MB</span>","children":null,"spread":false},{"title":"pre_pruning.py <span style='color:#111;'>4.82KB</span>","children":null,"spread":false},{"title":"data_discretization_bak.py <span style='color:#111;'>5.54KB</span>","children":null,"spread":false},{"title":"treePlotter.pyc <span style='color:#111;'>3.60KB</span>","children":null,"spread":false},{"title":"no_pruning_trees_bak.py <span style='color:#111;'>4.64KB</span>","children":null,"spread":false},{"title":"adult_data_test_all.csv <span style='color:#111;'>4.61MB</span>","children":null,"spread":false},{"title":"pre_pruning_bak.py <span style='color:#111;'>4.75KB</span>","children":null,"spread":false},{"title":"discretization_adult_test_all.csv <span style='color:#111;'>1.42MB</span>","children":null,"spread":false},{"title":"discretizationAnalysis.py <span style='color:#111;'>0B</span>","children":null,"spread":false},{"title":".idea","children":[{"title":"misc.xml <span style='color:#111;'>227B</span>","children":null,"spread":false},{"title":"modules.xml <span style='color:#111;'>276B</span>","children":null,"spread":false},{"title":"workspace.xml <span style='color:#111;'>33.93KB</span>","children":null,"spread":false},{"title":"decisionTree.iml <span style='color:#111;'>473B</span>","children":null,"spread":false}],"spread":false},{"title":"dataAnalysis_delete.py <span style='color:#111;'>3.00KB</span>","children":null,"spread":false},{"title":"data_cleaning.pyc <span style='color:#111;'>9.46KB</span>","children":null,"spread":false},{"title":"dataAnalysis_bak.py <span style='color:#111;'>6.03KB</span>","children":null,"spread":false},{"title":"discretization.py <span style='color:#111;'>841B</span>","children":null,"spread":false},{"title":"clean_adult_data_test_all.csv <span style='color:#111;'>5.19MB</span>","children":null,"spread":false},{"title":"adult.names <span style='color:#111;'>5.11KB</span>","children":null,"spread":false},{"title":"treePlotter.py <span style='color:#111;'>4.07KB</span>","children":null,"spread":false},{"title":"adultTree.txt <span style='color:#111;'>987.40KB</span>","children":null,"spread":false},{"title":"decisionTree.py <span style='color:#111;'>396B</span>","children":null,"spread":false},{"title":"dataAnalysis.py <span style='color:#111;'>2.87KB</span>","children":null,"spread":false}],"spread":false}],"spread":true}]

评论信息

  • weixin_42716010:
    有不少例子可以参考,目前正需要.2019-04-01

免责申明

【好快吧下载】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【好快吧下载】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【好快吧下载】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,8686821#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明