首页 人工智能 机器学习     /    Statistical-Learning-Method_Code.zip

Statistical-Learning-Method_Code.zip

上传者: m0_38053092 | 上传时间:2017/11/9 10:35:23 | 文件大小:30.94MB | 文件类型:ZIP
Statistical-Learning-Method_Code.zip
Statistical-Learning-Method_Codedemo 本软件ID:15420726

文件下载

资源详情

[{"title":"(41个子文件30.94MB)Statistical-Learning-Method_Code.zip","children":[{"title":"Statistical-Learning-Method_Code","children":[{"title":"PLSA","children":[{"title":"PLSA.py <span style='color:#111;'>7.91KB</span>","children":null,"spread":false},{"title":"PLSA.ipynb <span style='color:#111;'>9.75KB</span>","children":null,"spread":false},{"title":"bbc_text.csv <span style='color:#111;'>4.82MB</span>","children":null,"spread":false}],"spread":true},{"title":"Clustering","children":[{"title":"Hierachical_Clustering","children":[{"title":"Hierachical_Clustering.ipynb <span style='color:#111;'>29.95KB</span>","children":null,"spread":false},{"title":"Hierachical_Clustering.py <span style='color:#111;'>8.50KB</span>","children":null,"spread":false}],"spread":true},{"title":"iris.data <span style='color:#111;'>4.44KB</span>","children":null,"spread":false},{"title":"K-means_Clustering","children":[{"title":"K-means_Clustering.ipynb <span style='color:#111;'>23.76KB</span>","children":null,"spread":false},{"title":"K-means_Clustering.py <span style='color:#111;'>7.46KB</span>","children":null,"spread":false}],"spread":true}],"spread":true},{"title":"Page_Rank","children":[{"title":"Page_Rank.ipynb <span style='color:#111;'>4.69KB</span>","children":null,"spread":false},{"title":"directed_graph.png <span style='color:#111;'>48.55KB</span>","children":null,"spread":false},{"title":"Page_Rank.py <span style='color:#111;'>3.72KB</span>","children":null,"spread":false}],"spread":true},{"title":"LDA","children":[{"title":"LDA.py <span style='color:#111;'>8.70KB</span>","children":null,"spread":false},{"title":"bbc_text.csv <span style='color:#111;'>4.82MB</span>","children":null,"spread":false},{"title":"LDA.ipynb <span style='color:#111;'>12.47KB</span>","children":null,"spread":false}],"spread":true},{"title":"AdaBoost","children":[{"title":"AdaBoost.py <span style='color:#111;'>11.06KB</span>","children":null,"spread":false}],"spread":true},{"title":"PCA","children":[{"title":"PCA.ipynb <span style='color:#111;'>10.32KB</span>","children":null,"spread":false},{"title":"cars.csv <span style='color:#111;'>29.21KB</span>","children":null,"spread":false},{"title":"PCA.py <span style='color:#111;'>4.14KB</span>","children":null,"spread":false}],"spread":true},{"title":"perceptron","children":[{"title":"perceptron_dichotomy.py <span style='color:#111;'>5.59KB</span>","children":null,"spread":false}],"spread":true},{"title":"transMnist","children":[{"title":"transMnist.py <span style='color:#111;'>1.10KB</span>","children":null,"spread":false},{"title":"Mnist","children":[{"title":"train-labels.idx1-ubyte <span style='color:#111;'>58.60KB</span>","children":null,"spread":false},{"title":"train-images.idx3-ubyte <span style='color:#111;'>44.86MB</span>","children":null,"spread":false},{"title":"t10k-images.idx3-ubyte <span style='color:#111;'>7.48MB</span>","children":null,"spread":false},{"title":"t10k-labels.idx1-ubyte <span style='color:#111;'>9.77KB</span>","children":null,"spread":false}],"spread":true}],"spread":true},{"title":"SVM","children":[{"title":"SVM.py <span style='color:#111;'>18.60KB</span>","children":null,"spread":false}],"spread":true},{"title":"EM","children":[{"title":"EM.py <span style='color:#111;'>7.00KB</span>","children":null,"spread":false}],"spread":true},{"title":"CodePic.png <span style='color:#111;'>20.68KB</span>","children":null,"spread":false},{"title":"DecisionTree","children":[{"title":"DecisionTree.py <span style='color:#111;'>14.79KB</span>","children":null,"spread":false}],"spread":true},{"title":"NaiveBayes","children":[{"title":"NaiveBayes.py <span style='color:#111;'>9.18KB</span>","children":null,"spread":false}],"spread":true},{"title":"README.md <span style='color:#111;'>4.73KB</span>","children":null,"spread":false},{"title":"Logistic_and_maximum_entropy_models","children":[{"title":"logisticRegression.py <span style='color:#111;'>6.03KB</span>","children":null,"spread":false},{"title":"maxEntropy.py <span style='color:#111;'>12.38KB</span>","children":null,"spread":false}],"spread":false},{"title":"KNN","children":[{"title":"KNN.py <span style='color:#111;'>7.31KB</span>","children":null,"spread":false}],"spread":false},{"title":"HMM","children":[{"title":"HMM.py <span style='color:#111;'>18.22KB</span>","children":null,"spread":false},{"title":"testArtical.txt <span style='color:#111;'>2.73KB</span>","children":null,"spread":false},{"title":"HMMTrainSet.txt <span style='color:#111;'>7.37MB</span>","children":null,"spread":false}],"spread":false},{"title":"LSA","children":[{"title":"LSA.py <span style='color:#111;'>5.08KB</span>","children":null,"spread":false},{"title":"LSA.ipynb <span style='color:#111;'>6.80KB</span>","children":null,"spread":false},{"title":"bbc_text.csv <span style='color:#111;'>4.82MB</span>","children":null,"spread":false}],"spread":false},{"title":"Mnist","children":[{"title":"mnist_test.rar <span style='color:#111;'>1.86MB</span>","children":null,"spread":false},{"title":"mnist_train.rar <span style='color:#111;'>11.18MB</span>","children":null,"spread":false}],"spread":false}],"spread":false}],"spread":true}]

评论信息

免责申明

【好快吧下载】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【好快吧下载】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【好快吧下载】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,8686821#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明