首页 课程资源 讲义     /    《泛函分析》孙炯公开课配套课件下载

《泛函分析》孙炯公开课配套课件下载

上传者: hukeyongouc | 上传时间:2023/8/19 17:16:49 | 文件大小:14.72MB | 文件类型:rar
《泛函分析》孙炯公开课配套课件下载
内蒙古师范大学-孙炯老师《泛函分析》精品课程、公开课的配套课件,又需要的可以下载 本软件ID:9687835

文件下载

资源详情

[{"title":"(42个子文件14.72MB)《泛函分析》孙炯公开课配套课件下载","children":[{"title":"泛函分析目录.pdf <span style='color:#111;'>815.70KB</span>","children":null,"spread":false},{"title":"第1章距离空间","children":[{"title":"§1.4完备的距离空间.pdf <span style='color:#111;'>1.45MB</span>","children":null,"spread":false},{"title":"§1.1距离空间的基本概念.pdf <span style='color:#111;'>1.77MB</span>","children":null,"spread":false},{"title":"§1.2开集和连续映射.pdf <span style='color:#111;'>1.32MB</span>","children":null,"spread":false},{"title":"§1.5完备距离空间的性质和一些应用.pdf <span style='color:#111;'>1.58MB</span>","children":null,"spread":false},{"title":"第1章距离空间.pdf <span style='color:#111;'>1.80MB</span>","children":null,"spread":false},{"title":"§1.3闭集可分性列紧性.pdf <span style='color:#111;'>1.38MB</span>","children":null,"spread":false}],"spread":true},{"title":"《泛函分析》内蒙古师范大学-孙炯.mht <span style='color:#111;'>72.83KB</span>","children":null,"spread":false},{"title":"第2章线性赋范空间","children":[{"title":"§2.3赋范空间的凸集和子空间.pdf <span style='color:#111;'>829.84KB</span>","children":null,"spread":false},{"title":"§2.5赋范空间的进一步性质.pdf <span style='color:#111;'>852.49KB</span>","children":null,"spread":false},{"title":"§2.2赋范空间的例.pdf <span style='color:#111;'>1013.54KB</span>","children":null,"spread":false},{"title":"§2.1赋范空间的基本概念.pdf <span style='color:#111;'>991.63KB</span>","children":null,"spread":false},{"title":"第2章线性赋范空间.pdf <span style='color:#111;'>1.43MB</span>","children":null,"spread":false},{"title":"§2.4等价的范数有限维赋范空间.pdf <span style='color:#111;'>698.47KB</span>","children":null,"spread":false}],"spread":true},{"title":"第6章线性算子的谱理论","children":[{"title":"§6.1谱集和正则点集.pdf <span style='color:#111;'>706.79KB</span>","children":null,"spread":false},{"title":"§6.5有界自共轭线性算子的谱.pdf <span style='color:#111;'>670.65KB</span>","children":null,"spread":false},{"title":"§6.3紧线性算子.pdf <span style='color:#111;'>880.39KB</span>","children":null,"spread":false},{"title":"§6.4紧线性算子的谱.pdf <span style='color:#111;'>685.60KB</span>","children":null,"spread":false},{"title":"第6章线性算子的谱理论.pdf <span style='color:#111;'>1.36MB</span>","children":null,"spread":false},{"title":"§6.6投影算子的加权和.pdf <span style='color:#111;'>979.50KB</span>","children":null,"spread":false},{"title":"§6.2有界线性算子谱的性质.pdf <span style='color:#111;'>812.17KB</span>","children":null,"spread":false}],"spread":true},{"title":"第3章内积空间与Hilbert空间","children":[{"title":"§3.3正交系和正交基.pdf <span style='color:#111;'>718.94KB</span>","children":null,"spread":false},{"title":"§3.4Bessel不等式和正交列的完备性.pdf <span style='color:#111;'>1.12MB</span>","children":null,"spread":false},{"title":"§3.1内积空间的基本性质.pdf <span style='color:#111;'>1.06MB</span>","children":null,"spread":false},{"title":"第3章内积空间与Hilbert空间.pdf <span style='color:#111;'>1.24MB</span>","children":null,"spread":false},{"title":"§3.2正交与正交分解.pdf <span style='color:#111;'>982.46KB</span>","children":null,"spread":false},{"title":"§3.5可分的Hilbert空间.pdf <span style='color:#111;'>708.11KB</span>","children":null,"spread":false}],"spread":true},{"title":"第4章有界线性算子","children":[{"title":"§4.1有界线性算子与线性泛函.pdf <span style='color:#111;'>1.30MB</span>","children":null,"spread":false},{"title":"§4.2有界线性算子空间的收敛与完备性.pdf <span style='color:#111;'>661.18KB</span>","children":null,"spread":false},{"title":"§4.4开映射定理与逆算子定理.pdf <span style='color:#111;'>1.03MB</span>","children":null,"spread":false},{"title":"第4章有界线性算子.pdf <span style='color:#111;'>1.26MB</span>","children":null,"spread":false},{"title":"§4.3一致有界原则.pdf <span style='color:#111;'>1.01MB</span>","children":null,"spread":false},{"title":"§4.5闭算子与闭图像定理.pdf <span style='color:#111;'>592.46KB</span>","children":null,"spread":false}],"spread":true},{"title":"第0章绪论","children":[{"title":"第0章绪论.pdf <span style='color:#111;'>915.54KB</span>","children":null,"spread":false},{"title":"§0.0前言.pdf <span style='color:#111;'>742.48KB</span>","children":null,"spread":false},{"title":"§0.1从数学分析、线性代数到泛函分析.pdf <span style='color:#111;'>1.14MB</span>","children":null,"spread":false}],"spread":true},{"title":"第5章共轭空间和共轭算子","children":[{"title":"§5.5Banach空间上的共轭算子,弱收敛.pdf <span style='color:#111;'>851.33KB</span>","children":null,"spread":false},{"title":"§5.2共轭空间.pdf <span style='color:#111;'>754.92KB</span>","children":null,"spread":false},{"title":"§5.4自共轭的有界线性算子.pdf <span style='color:#111;'>666.92KB</span>","children":null,"spread":false},{"title":"§5.3Hilbert空间的共轭空间Hilbert空间的共轭算子.pdf <span style='color:#111;'>728.90KB</span>","children":null,"spread":false},{"title":"第5章共轭空间和共轭算子.pdf <span style='color:#111;'>1.24MB</span>","children":null,"spread":false},{"title":"§5.1Hahn-Banach定理.pdf <span style='color:#111;'>894.21KB</span>","children":null,"spread":false}],"spread":true}],"spread":true}]

评论信息

  • liuweifeng2010:
    内容完整,不错的学习资料2019-07-10
  • nachifur:
    资源一般吧,去爱课程公开课的官网可以找到2019-05-31
  • qq_20224629:
    整的十号字眼2018-12-21
  • 剑雨枫:
    解压密码是啥2018-10-25

免责申明

【好快吧下载】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【好快吧下载】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【好快吧下载】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,8686821#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明