首页 / 人工智能 / 深度学习     /    这是基于CNN算法的分类代码

这是基于CNN算法的分类代码

上传者: gaoshuangyin | 上传时间:2023/10/18 3:48:41 | 文件大小:10.18MB | 文件类型:rar
这是基于CNN算法的分类代码
该算法内容介绍很详细算法步骤也容易看懂在此分享给大家 本软件ID:10188482

文件下载

资源详情

(29个子文件10.18MB)这是基于CNN算法的分类代码
0000
Demo
cnnTrain.m 3.10KB
config.m 794B
configTestGradient.m 1.14KB
DebugTools
samplePatches.m 733B
computeNumericalGradient.m 1.22KB
thetaChange.m 2.58KB
grad_check.m 679B
display_network.m 2.58KB
LICENSE 17.60KB
README.md 2.06KB
cnnInitParams.m 2.56KB
Testing
testGradCom.m 1.68KB
testInit.m 93B
test.m 102B
testThetaChange.m 651B
layer
Test.m 3.86KB
nonlinear.m 988B
TestPool.m 231B
cnnParamsToStack.m 1.37KB
cnnPool.m 2.47KB
cnnConvolve.m 3.06KB
Dataset
MNIST
loadMNISTImages.m 826B
t10k-images-idx3-ubyte 7.48MB
loadMNISTLabels.m 516B
train-labels-idx1-ubyte 58.60KB
t10k-labels-idx1-ubyte 9.77KB
train-images-idx3-ubyte 44.86MB
cnnCost.m 7.84KB
TrainingMethod
minFuncSGD.m 2.48KB
[{"title":"(29个子文件10.18MB)这是基于CNN算法的分类代码","children":[{"title":"0000","children":[{"title":"Demo","children":[{"title":"cnnTrain.m <span style='color:#111;'>3.10KB</span>","children":null,"spread":false},{"title":"config.m <span style='color:#111;'>794B</span>","children":null,"spread":false},{"title":"configTestGradient.m <span style='color:#111;'>1.14KB</span>","children":null,"spread":false}],"spread":true},{"title":"DebugTools","children":[{"title":"samplePatches.m <span style='color:#111;'>733B</span>","children":null,"spread":false},{"title":"computeNumericalGradient.m <span style='color:#111;'>1.22KB</span>","children":null,"spread":false},{"title":"thetaChange.m <span style='color:#111;'>2.58KB</span>","children":null,"spread":false},{"title":"grad_check.m <span style='color:#111;'>679B</span>","children":null,"spread":false},{"title":"display_network.m <span style='color:#111;'>2.58KB</span>","children":null,"spread":false}],"spread":true},{"title":"LICENSE <span style='color:#111;'>17.60KB</span>","children":null,"spread":false},{"title":"README.md <span style='color:#111;'>2.06KB</span>","children":null,"spread":false},{"title":"cnnInitParams.m <span style='color:#111;'>2.56KB</span>","children":null,"spread":false},{"title":"Testing","children":[{"title":"testGradCom.m <span style='color:#111;'>1.68KB</span>","children":null,"spread":false},{"title":"testInit.m <span style='color:#111;'>93B</span>","children":null,"spread":false},{"title":"test.m <span style='color:#111;'>102B</span>","children":null,"spread":false},{"title":"testThetaChange.m <span style='color:#111;'>651B</span>","children":null,"spread":false}],"spread":true},{"title":"layer","children":[{"title":"Test.m <span style='color:#111;'>3.86KB</span>","children":null,"spread":false},{"title":"nonlinear.m <span style='color:#111;'>988B</span>","children":null,"spread":false},{"title":"TestPool.m <span style='color:#111;'>231B</span>","children":null,"spread":false},{"title":"cnnParamsToStack.m <span style='color:#111;'>1.37KB</span>","children":null,"spread":false},{"title":"cnnPool.m <span style='color:#111;'>2.47KB</span>","children":null,"spread":false},{"title":"cnnConvolve.m <span style='color:#111;'>3.06KB</span>","children":null,"spread":false}],"spread":true},{"title":"Dataset","children":[{"title":"MNIST","children":[{"title":"loadMNISTImages.m <span style='color:#111;'>826B</span>","children":null,"spread":false},{"title":"t10k-images-idx3-ubyte <span style='color:#111;'>7.48MB</span>","children":null,"spread":false},{"title":"loadMNISTLabels.m <span style='color:#111;'>516B</span>","children":null,"spread":false},{"title":"train-labels-idx1-ubyte <span style='color:#111;'>58.60KB</span>","children":null,"spread":false},{"title":"t10k-labels-idx1-ubyte <span style='color:#111;'>9.77KB</span>","children":null,"spread":false},{"title":"train-images-idx3-ubyte <span style='color:#111;'>44.86MB</span>","children":null,"spread":false}],"spread":true}],"spread":true},{"title":"cnnCost.m <span style='color:#111;'>7.84KB</span>","children":null,"spread":false},{"title":"TrainingMethod","children":[{"title":"minFuncSGD.m <span style='color:#111;'>2.48KB</span>","children":null,"spread":false}],"spread":true}],"spread":true}],"spread":true}]

评论信息

免责申明

【好快吧下载】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【好快吧下载】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【好快吧下载】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,8686821#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明