(41个子文件28.59MB)斯坦福大学吴恩达机器学习课程学习笔记和原始讲义
斯坦福大学机器学习课程原始讲义.zip 2.98MB
斯坦福大学机器学习课程个人学习笔记(下).zip 6.01MB
斯坦福大学机器学习课程个人学习笔记(上).zip 5.31MB
(16)偏最小二乘法回归.pdf 279.08KB
cs229-notes7a.pdf 264.67KB
cs229-linalg.pdf 164.59KB
cs229-cvxopt2.pdf 196.80KB
cs229-notes7b.pdf 53.89KB
cs229-notes1.pdf 229.65KB
cs229-notes10.pdf 75.40KB
cs229-notes12.pdf 73.96KB
cs229-notes4.pdf 108.74KB
cs229-notes3.pdf 175.57KB
cs229-cvxopt.pdf 148.86KB
cs229-notes11.pdf 74.18KB
cs229-notes2.pdf 858.17KB
(3)支持向量机SVM(上).pdf 877.86KB
(2)判别模型、生成模型与朴素贝叶斯方法.pdf 1.04MB
(7)混合高斯模型和EM算法.pdf 436.95KB
(1)线性回归、logistic回归和一般回归.pdf 842.55KB
(6)K-means聚类算法.pdf 532.76KB
(4)支持向量机SVM(下).pdf 1.15MB
[{"title":"(41个子文件28.59MB)斯坦福大学吴恩达机器学习课程学习笔记和原始讲义","children":[{"title":"斯坦福大学吴恩达机器学习课程学习笔记和原始讲义","children":[{"title":"斯坦福大学机器学习课程原始讲义.zip <span style='color:#111;'>2.98MB</span>","children":null,"spread":false},{"title":"斯坦福大学机器学习课程个人学习笔记(下).zip <span style='color:#111;'>6.01MB</span>","children":null,"spread":false},{"title":"斯坦福大学机器学习课程个人学习笔记(上).zip <span style='color:#111;'>5.31MB</span>","children":null,"spread":false},{"title":"斯坦福大学机器学习课程个人学习笔记(下)","children":[{"title":"(13)因子分析.pdf <span style='color:#111;'>952.74KB</span>","children":null,"spread":false},{"title":"(14)增强学习.pdf <span style='color:#111;'>899.98KB</span>","children":null,"spread":false},{"title":"(15)典型关联分析.pdf <span style='color:#111;'>961.54KB</span>","children":null,"spread":false},{"title":"(10)主成分分析.pdf <span style='color:#111;'>1.72MB</span>","children":null,"spread":false},{"title":"(16)偏最小二乘法回归.pdf <span style='color:#111;'>279.08KB</span>","children":null,"spread":false},{"title":"请先查看该说明.txt <span style='color:#111;'>910B</span>","children":null,"spread":false},{"title":"(12)线性判别分析.pdf <span style='color:#111;'>918.07KB</span>","children":null,"spread":false},{"title":"(11)独立成分分析.pdf <span style='color:#111;'>905.68KB</span>","children":null,"spread":false},{"title":"(9)在线学习.pdf <span style='color:#111;'>530.77KB</span>","children":null,"spread":false}],"spread":true},{"title":"斯坦福大学机器学习课程原始讲义","children":[{"title":"cs229-notes7a.pdf <span style='color:#111;'>264.67KB</span>","children":null,"spread":false},{"title":"cs229-notes9.pdf <span style='color:#111;'>81.16KB</span>","children":null,"spread":false},{"title":"cs229-gp.pdf <span style='color:#111;'>150.96KB</span>","children":null,"spread":false},{"title":"cs229-prob.pdf <span style='color:#111;'>147.50KB</span>","children":null,"spread":false},{"title":"cs229-linalg.pdf <span style='color:#111;'>164.59KB</span>","children":null,"spread":false},{"title":"cs229-cvxopt2.pdf <span style='color:#111;'>196.80KB</span>","children":null,"spread":false},{"title":"cs229-notes5.pdf <span style='color:#111;'>86.63KB</span>","children":null,"spread":false},{"title":"cs229-notes7b.pdf <span style='color:#111;'>53.89KB</span>","children":null,"spread":false},{"title":"cs229-notes1.pdf <span style='color:#111;'>229.65KB</span>","children":null,"spread":false},{"title":"ML-advice.pdf <span style='color:#111;'>313.47KB</span>","children":null,"spread":false},{"title":"cs229-notes10.pdf <span style='color:#111;'>75.40KB</span>","children":null,"spread":false},{"title":"cs229-notes12.pdf <span style='color:#111;'>73.96KB</span>","children":null,"spread":false},{"title":"cs229-notes4.pdf <span style='color:#111;'>108.74KB</span>","children":null,"spread":false},{"title":"cs229-notes3.pdf <span style='color:#111;'>175.57KB</span>","children":null,"spread":false},{"title":"cs229-hmm.pdf <span style='color:#111;'>197.80KB</span>","children":null,"spread":false},{"title":"cs229-notes8.pdf <span style='color:#111;'>81.18KB</span>","children":null,"spread":false},{"title":"cs229-cvxopt.pdf <span style='color:#111;'>148.86KB</span>","children":null,"spread":false},{"title":"cs229-notes11.pdf <span style='color:#111;'>74.18KB</span>","children":null,"spread":false},{"title":"cs229-notes6.pdf <span style='color:#111;'>50.85KB</span>","children":null,"spread":false},{"title":"cs229-notes2.pdf <span style='color:#111;'>858.17KB</span>","children":null,"spread":false}],"spread":false},{"title":"斯坦福大学机器学习课程个人学习笔记(上)","children":[{"title":"(3)支持向量机SVM(上).pdf <span style='color:#111;'>877.86KB</span>","children":null,"spread":false},{"title":"(2)判别模型、生成模型与朴素贝叶斯方法.pdf <span style='color:#111;'>1.04MB</span>","children":null,"spread":false},{"title":"(7)混合高斯模型和EM算法.pdf <span style='color:#111;'>436.95KB</span>","children":null,"spread":false},{"title":"请先查看该说明.txt <span style='color:#111;'>910B</span>","children":null,"spread":false},{"title":"(1)线性回归、logistic回归和一般回归.pdf <span style='color:#111;'>842.55KB</span>","children":null,"spread":false},{"title":"(8)EM算法.pdf <span style='color:#111;'>757.24KB</span>","children":null,"spread":false},{"title":"(6)K-means聚类算法.pdf <span style='color:#111;'>532.76KB</span>","children":null,"spread":false},{"title":"(5)规则化和模型选择.pdf <span style='color:#111;'>895.02KB</span>","children":null,"spread":false},{"title":"(4)支持向量机SVM(下).pdf <span style='color:#111;'>1.15MB</span>","children":null,"spread":false}],"spread":true}],"spread":true}],"spread":true}]