[{"title":"(30个子文件1.46MB)数学建模30种算法MATLAB代码","children":[{"title":"chapter21模拟退火算法工具箱及应用.rar <span style='color:#111;'>713B</span>","children":null,"spread":false},{"title":"chapter14基于粒子群算法的PID控制器优化设计.rar <span style='color:#111;'>141.36KB</span>","children":null,"spread":false},{"title":"chapter5基于遗传算法的LQR控制器优化设计.rar <span style='color:#111;'>92.15KB</span>","children":null,"spread":false},{"title":"chapter11基于多层编码遗传算法的车间调度算法.rar <span style='color:#111;'>10.71KB</span>","children":null,"spread":false},{"title":"chapter26.rar <span style='color:#111;'>2.89KB</span>","children":null,"spread":false},{"title":"chapter2基于遗传算法和非线性规划的函数寻优算法.rar <span style='color:#111;'>26.05KB</span>","children":null,"spread":false},{"title":"chapter23基于蚁群算法的二维路径规划算法.rar <span style='color:#111;'>3.08KB</span>","children":null,"spread":false},{"title":"chapter9基于遗传算法的多目标优化算法.rar <span style='color:#111;'>705B</span>","children":null,"spread":false},{"title":"chapter18鱼群算法函数寻优.rar <span style='color:#111;'>7.47KB</span>","children":null,"spread":false},{"title":"chapter19基于模拟退火算法的TSP算法.rar <span style='color:#111;'>4.88KB</span>","children":null,"spread":false},{"title":"chapter24基于蚁群算法的三维路径规划算法.rar <span style='color:#111;'>5.55KB</span>","children":null,"spread":false},{"title":"chapter10基于粒子群算法的多目标搜索算法.rar <span style='color:#111;'>2.52KB</span>","children":null,"spread":false},{"title":"chapter8基于量子遗传算法的函数寻优算法.rar <span style='color:#111;'>3.10KB</span>","children":null,"spread":false},{"title":"chapter4sa_tsp.rar <span style='color:#111;'>7.09KB</span>","children":null,"spread":false},{"title":"chapter17基于PSO工具箱的函数优化算法.rar <span style='color:#111;'>31.90KB</span>","children":null,"spread":false},{"title":"chapter27无导师学习神经网络的分类——矿井突水水源判别.rar <span style='color:#111;'>2.44KB</span>","children":null,"spread":false},{"title":"chapter6遗传算法工具箱详解及应用.rar <span style='color:#111;'>628B</span>","children":null,"spread":false},{"title":"chapter20基于遗传模拟退火算法的聚类算法.rar <span style='color:#111;'>11.29KB</span>","children":null,"spread":false},{"title":"chapter3基于遗传算法的BP神经网络优化算法.rar <span style='color:#111;'>4.61KB</span>","children":null,"spread":false},{"title":"chapter15基于混合粒子群算法的TSP搜索算法.rar <span style='color:#111;'>12.14KB</span>","children":null,"spread":false},{"title":"chapter16基于动态粒子群算法的动态环境寻优算法.rar <span style='color:#111;'>18.15KB</span>","children":null,"spread":false},{"title":"chapter1遗传算法工具箱.rar <span style='color:#111;'>2.12KB</span>","children":null,"spread":false},{"title":"chapter22蚁群算法的优化计算——旅行商问题(TSP)优化.rar <span style='color:#111;'>2.63KB</span>","children":null,"spread":false},{"title":"chapter25有导师学习神经网络的回归拟合——基于近红外光谱的汽油辛烷值预测.rar <span style='color:#111;'>169.09KB</span>","children":null,"spread":false},{"title":"chapter13粒子群优化算法的寻优算法.rar <span style='color:#111;'>717.65KB</span>","children":null,"spread":false},{"title":"chapter29支持向量机的回归拟合——混凝土抗压强度预测.rar <span style='color:#111;'>4.29KB</span>","children":null,"spread":false},{"title":"chapter12免疫优化算法在物流配送中心选址中的应用.rar <span style='color:#111;'>28.00KB</span>","children":null,"spread":false},{"title":"chapter7多种群遗传算法的函数优化算法.rar <span style='color:#111;'>4.03KB</span>","children":null,"spread":false},{"title":"chapter30极限学习机的回归拟合及分类.rar <span style='color:#111;'>172.09KB</span>","children":null,"spread":false},{"title":"chapter28支持向量机的分类——基于乳腺组织电阻抗特性的乳腺癌诊断.rar <span style='color:#111;'>8.37KB</span>","children":null,"spread":false}],"spread":true}]