首页 开发技术 其它     /    机器学习项目:实施各种有监督和无监督的ML项目-源码

机器学习项目:实施各种有监督和无监督的ML项目-源码

上传者: weixin_42121058 | 上传时间:2024/10/8 3:58:03 | 文件大小:5.28MB | 文件类型:ZIP
机器学习项目:实施各种有监督和无监督的ML项目-源码
机器学习项目实施各种有监督和无监督的机器学习项目 本软件ID:15173528

文件下载

资源详情

[{"title":"(45个子文件5.28MB)机器学习项目:实施各种有监督和无监督的ML项目-源码","children":[{"title":"Machine-Learning-Projects-main","children":[{"title":"NLP","children":[{"title":"Restaurant-Reviews-Sentiment-Analysis","children":[{"title":"Restaurant_Reviews.tsv <span style='color:#111;'>59.89KB</span>","children":null,"spread":false},{"title":"restaurant_reviews_stem_bow.ipynb <span style='color:#111;'>59.73KB</span>","children":null,"spread":false}],"spread":true},{"title":"ML-Spam-Detection","children":[{"title":"SPAM_Detection_stem_bow.ipynb <span style='color:#111;'>292.75KB</span>","children":null,"spread":false},{"title":"SMSSpamCollection <span style='color:#111;'>466.71KB</span>","children":null,"spread":false}],"spread":true}],"spread":true},{"title":"RegressionProjects","children":[{"title":"RandomForestRegressor","children":[{"title":"RandomForestRegressor.ipynb <span style='color:#111;'>47.06KB</span>","children":null,"spread":false},{"title":"randomforestassignment.pdf <span style='color:#111;'>4.09KB</span>","children":null,"spread":false}],"spread":true},{"title":"Flight-Fare-Prediction","children":[{"title":"flight_fare_prediction.ipynb <span style='color:#111;'>298.22KB</span>","children":null,"spread":false},{"title":"Data_Train.xlsx <span style='color:#111;'>517.96KB</span>","children":null,"spread":false},{"title":"Test_set.xlsx <span style='color:#111;'>117.94KB</span>","children":null,"spread":false}],"spread":true},{"title":"LinearRegressionProject","children":[{"title":"linearregressionassignment.pdf <span style='color:#111;'>3.33KB</span>","children":null,"spread":false},{"title":"inear-regression-housing-pred.ipynb <span style='color:#111;'>82.14KB</span>","children":null,"spread":false}],"spread":true},{"title":"Car-Price-Prediction","children":[{"title":"cardata.csv <span style='color:#111;'>16.81KB</span>","children":null,"spread":false},{"title":"CarPricePrediction.ipynb <span style='color:#111;'>166.51KB</span>","children":null,"spread":false},{"title":"CARDETAILSFROMCARDEKHO.csv <span style='color:#111;'>346.32KB</span>","children":null,"spread":false}],"spread":true},{"title":"HousingPricePrediction","children":[{"title":"train.csv <span style='color:#111;'>449.88KB</span>","children":null,"spread":false},{"title":"HousingPricePrediction.ipynb <span style='color:#111;'>1.41MB</span>","children":null,"spread":false},{"title":"test.csv <span style='color:#111;'>440.83KB</span>","children":null,"spread":false},{"title":"data_description.txt <span style='color:#111;'>13.06KB</span>","children":null,"spread":false}],"spread":true}],"spread":true},{"title":"ClassificationProjects","children":[{"title":"PIMA-Diabetes-Kaggle-Problem-Statement","children":[{"title":"pima_diabetes_classification.ipynb <span style='color:#111;'>119.73KB</span>","children":null,"spread":false},{"title":"diabetes.csv <span style='color:#111;'>23.31KB</span>","children":null,"spread":false}],"spread":true},{"title":"TitanicDecisionTree","children":[{"title":"decisiontreeassignment.pdf <span style='color:#111;'>400.98KB</span>","children":null,"spread":false},{"title":"titanicdecisiontree.ipynb <span style='color:#111;'>104.75KB</span>","children":null,"spread":false}],"spread":true},{"title":"XGBClassifier","children":[{"title":"adult.csv <span style='color:#111;'>3.91MB</span>","children":null,"spread":false},{"title":"XGB_Classifier_with_Standardization.ipynb <span style='color:#111;'>343.20KB</span>","children":null,"spread":false},{"title":"xgboostassignment.pdf <span style='color:#111;'>7.98KB</span>","children":null,"spread":false}],"spread":true},{"title":"Bank-Notes-Authenticator","children":[{"title":"BankNote_Authentication.csv <span style='color:#111;'>45.35KB</span>","children":null,"spread":false},{"title":"BankNoteAuthentication.ipynb <span style='color:#111;'>16.73KB</span>","children":null,"spread":false}],"spread":true},{"title":"TitanicSurvivalAnalysis","children":[{"title":"train.csv <span style='color:#111;'>59.76KB</span>","children":null,"spread":false},{"title":"TitanicPassengerSurvival.ipynb <span style='color:#111;'>593.46KB</span>","children":null,"spread":false},{"title":"test.csv <span style='color:#111;'>27.96KB</span>","children":null,"spread":false}],"spread":true},{"title":"LogisticRegressionProject","children":[{"title":"AffairorNotAffairLogisticRegression.ipynb <span style='color:#111;'>250.83KB</span>","children":null,"spread":false},{"title":"logisticsregressionassignement.pdf <span style='color:#111;'>6.81KB</span>","children":null,"spread":false}],"spread":true}],"spread":true},{"title":"DataEngineering","children":[{"title":"DataCleaning","children":[{"title":"datacleaningpandas.pdf <span style='color:#111;'>161.10KB</span>","children":null,"spread":false},{"title":"DataCleaning.ipynb <span style='color:#111;'>19.02KB</span>","children":null,"spread":false}],"spread":true},{"title":"Numpy","children":[{"title":"NumpyPython.ipynb <span style='color:#111;'>5.93KB</span>","children":null,"spread":false}],"spread":true},{"title":"DataVisulaization","children":[{"title":"Iris.xls <span style='color:#111;'>4.99KB</span>","children":null,"spread":false},{"title":"DataVisualization.ipynb <span style='color:#111;'>134.59KB</span>","children":null,"spread":false},{"title":"datavisualizationassignment.pdf <span style='color:#111;'>3.25KB</span>","children":null,"spread":false}],"spread":true}],"spread":true},{"title":"LICENSE <span style='color:#111;'>34.33KB</span>","children":null,"spread":false},{"title":"README.md <span style='color:#111;'>95B</span>","children":null,"spread":false},{"title":"UnsupervisedML","children":[{"title":"MLProjectClustering","children":[{"title":"MLprojectclustering.pdf <span style='color:#111;'>28.70KB</span>","children":null,"spread":false},{"title":"ML_Clustering_Assignment.ipynb <span style='color:#111;'>1.18MB</span>","children":null,"spread":false}],"spread":true},{"title":"K-MeansClustering","children":[{"title":"compressed_racoon.jpg <span style='color:#111;'>295.39KB</span>","children":null,"spread":false},{"title":"clusteringassignment.pdf <span style='color:#111;'>3.46KB</span>","children":null,"spread":false},{"title":"K-MeansClustering.ipynb <span style='color:#111;'>279.87KB</span>","children":null,"spread":false}],"spread":true}],"spread":true}],"spread":true}],"spread":true}]

评论信息

免责申明

【好快吧下载】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【好快吧下载】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【好快吧下载】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,8686821#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明