首页 开发技术 其它     /    Python-基于知识图谱的问答系统BERT做命名实体识别和句子相似度分为online和outline模式

Python-基于知识图谱的问答系统BERT做命名实体识别和句子相似度分为online和outline模式

上传者: weixin_39841882 | 上传时间:2023/8/10 21:47:58 | 文件大小:1.51MB | 文件类型:zip
Python-基于知识图谱的问答系统BERT做命名实体识别和句子相似度分为online和outline模式
基于知识图谱的问答系统,BERT做命名实体识别和句子相似度,分为online和outline模式 本软件ID:11512898

文件下载

资源详情

[{"title":"(52个子文件1.51MB)Python-基于知识图谱的问答系统BERT做命名实体识别和句子相似度分为online和outline模式","children":[{"title":"KBQA-BERT-master","children":[{"title":"args.py <span style='color:#111;'>785B</span>","children":null,"spread":false},{"title":"kbqa_test.py <span style='color:#111;'>7.29KB</span>","children":null,"spread":false},{"title":"bert","children":[{"title":"optimization_test.py <span style='color:#111;'>1.68KB</span>","children":null,"spread":false},{"title":"tokenization.py <span style='color:#111;'>10.31KB</span>","children":null,"spread":false},{"title":"requirements.txt <span style='color:#111;'>110B</span>","children":null,"spread":false},{"title":"tokenization_test.py <span style='color:#111;'>4.28KB</span>","children":null,"spread":false},{"title":"modeling_test.py <span style='color:#111;'>8.98KB</span>","children":null,"spread":false},{"title":"__init__.py <span style='color:#111;'>0B</span>","children":null,"spread":false},{"title":"CONTRIBUTING.md <span style='color:#111;'>1.29KB</span>","children":null,"spread":false},{"title":"run_squad.py <span style='color:#111;'>45.29KB</span>","children":null,"spread":false},{"title":"run_classifier.py <span style='color:#111;'>31.09KB</span>","children":null,"spread":false},{"title":"LICENSE <span style='color:#111;'>11.09KB</span>","children":null,"spread":false},{"title":"optimization.py <span style='color:#111;'>5.90KB</span>","children":null,"spread":false},{"title":"modeling.py <span style='color:#111;'>37.28KB</span>","children":null,"spread":false},{"title":"README.md <span style='color:#111;'>39.89KB</span>","children":null,"spread":false},{"title":"sample_text.txt <span style='color:#111;'>4.29KB</span>","children":null,"spread":false},{"title":"__pycache__","children":[{"title":"tokenization.cpython-36.pyc <span style='color:#111;'>8.50KB</span>","children":null,"spread":false},{"title":"optimization.cpython-36.pyc <span style='color:#111;'>3.67KB</span>","children":null,"spread":false},{"title":"__init__.cpython-36.pyc <span style='color:#111;'>161B</span>","children":null,"spread":false},{"title":"modeling.cpython-36.pyc <span style='color:#111;'>25.20KB</span>","children":null,"spread":false}],"spread":false},{"title":"multilingual.md <span style='color:#111;'>10.54KB</span>","children":null,"spread":false},{"title":"run_pretraining.py <span style='color:#111;'>18.23KB</span>","children":null,"spread":false},{"title":"extract_features.py <span style='color:#111;'>13.57KB</span>","children":null,"spread":false},{"title":"create_pretraining_data.py <span style='color:#111;'>14.85KB</span>","children":null,"spread":false}],"spread":false},{"title":"terminal_predict.py <span style='color:#111;'>14.93KB</span>","children":null,"spread":false},{"title":"ModelParams","children":[{"title":"README.md <span style='color:#111;'>123B</span>","children":null,"spread":false}],"spread":true},{"title":"run_ner.sh <span style='color:#111;'>635B</span>","children":null,"spread":false},{"title":"terminal_ner.sh <span style='color:#111;'>676B</span>","children":null,"spread":false},{"title":"LICENSE <span style='color:#111;'>1.04KB</span>","children":null,"spread":false},{"title":"tf_metrics.py <span style='color:#111;'>8.00KB</span>","children":null,"spread":false},{"title":"conlleval.py <span style='color:#111;'>9.96KB</span>","children":null,"spread":false},{"title":"README.md <span style='color:#111;'>4.01KB</span>","children":null,"spread":false},{"title":"image","children":[{"title":"KB.png <span style='color:#111;'>15.46KB</span>","children":null,"spread":false},{"title":"NER.jpg <span style='color:#111;'>11.10KB</span>","children":null,"spread":false}],"spread":true},{"title":"Output","children":[{"title":"README.md <span style='color:#111;'>123B</span>","children":null,"spread":false}],"spread":true},{"title":"Data","children":[{"title":"DB_Data","children":[{"title":"README.md <span style='color:#111;'>123B</span>","children":null,"spread":false}],"spread":false},{"title":"NER_Data","children":[{"title":"README.md <span style='color:#111;'>123B</span>","children":null,"spread":false}],"spread":false},{"title":"construct_dataset_attribute.py <span style='color:#111;'>1.70KB</span>","children":null,"spread":false},{"title":"NLPCC2016KBQA","children":[{"title":"nlpcc-iccpol-2016.kbqa.training-data <span style='color:#111;'>3.19MB</span>","children":null,"spread":false},{"title":"nlpcc-iccpol-2016.kbqa.testing-data <span style='color:#111;'>2.16MB</span>","children":null,"spread":false},{"title":"nlpcc-iccpol-2016.kbqa.kb <span style='color:#111;'>29.15KB</span>","children":null,"spread":false}],"spread":false},{"title":"load_dbdata.py <span style='color:#111;'>3.29KB</span>","children":null,"spread":false},{"title":"Sim_Data","children":[{"title":"README.md <span style='color:#111;'>123B</span>","children":null,"spread":false}],"spread":false},{"title":"triple_clean.py <span style='color:#111;'>1.54KB</span>","children":null,"spread":false},{"title":"construct_dataset.py <span style='color:#111;'>1.98KB</span>","children":null,"spread":false}],"spread":true},{"title":"lstm_crf_layer.py <span style='color:#111;'>6.58KB</span>","children":null,"spread":false},{"title":"global_config.py <span style='color:#111;'>2.00KB</span>","children":null,"spread":false},{"title":"run_ner.py <span style='color:#111;'>34.30KB</span>","children":null,"spread":false},{"title":"Config","children":[{"title":"NER","children":[{"title":"README.md <span style='color:#111;'>123B</span>","children":null,"spread":false}],"spread":false},{"title":"SIM","children":[{"title":"README.md <span style='color:#111;'>123B</span>","children":null,"spread":false}],"spread":false}],"spread":false},{"title":"run_similarity.py <span style='color:#111;'>27.94KB</span>","children":null,"spread":false},{"title":"conlleval.pl <span style='color:#111;'>12.52KB</span>","children":null,"spread":false}],"spread":false}],"spread":true}]

评论信息

  • weixin_39609852:
    都是代码,连个介绍都没有,完全是从github上搞下来的2020-09-14
  • weixin_39609852:
    都是代码,连个介绍都没有,完全是从github上搞下来的2020-09-14
  • weixin_38746926:
    非常好的资源,值得学习,感谢分享2020-03-26
  • weixin_38746926:
    非常好的资源,值得学习,感谢分享2020-03-26

免责申明

【好快吧下载】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【好快吧下载】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【好快吧下载】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,8686821#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明