首页 开发技术 其它     /    Python-Keras实现实时语义分割的深层神经网络架构ENET

Python-Keras实现实时语义分割的深层神经网络架构ENET

上传者: weixin_39841856 | 上传时间:2023/9/6 3:31:32 | 文件大小:72KB | 文件类型:zip
Python-Keras实现实时语义分割的深层神经网络架构ENET
Keras实现实时语义分割的深层神经网络架构ENET 本软件ID:11520829

文件下载

资源详情

[{"title":"(58个子文件72KB)Python-Keras实现实时语义分割的深层神经网络架构ENET","children":[{"title":"PavlosMelissinos-enet-keras-168b7e0","children":[{"title":"experiments","children":[{"title":"README.md <span style='color:#111;'>291B</span>","children":null,"spread":false}],"spread":true},{"title":"src","children":[{"title":"experiments","children":[{"title":"__init__.py <span style='color:#111;'>35B</span>","children":null,"spread":false},{"title":"core.py <span style='color:#111;'>13.25KB</span>","children":null,"spread":false}],"spread":true},{"title":"models","children":[{"title":"enet_naive_upsampling","children":[{"title":"model.py <span style='color:#111;'>1.11KB</span>","children":null,"spread":false},{"title":"__init__.py <span style='color:#111;'>15B</span>","children":null,"spread":false},{"title":"LICENSE <span style='color:#111;'>203B</span>","children":null,"spread":false},{"title":"encoder.py <span style='color:#111;'>3.66KB</span>","children":null,"spread":false},{"title":"decoder.py <span style='color:#111;'>1.77KB</span>","children":null,"spread":false}],"spread":true},{"title":"enet_unpooling","children":[{"title":"model.py <span style='color:#111;'>4.51KB</span>","children":null,"spread":false},{"title":"__init__.py <span style='color:#111;'>0B</span>","children":null,"spread":false},{"title":"LICENSE <span style='color:#111;'>203B</span>","children":null,"spread":false},{"title":"encoder.py <span style='color:#111;'>4.00KB</span>","children":null,"spread":false},{"title":"decoder.py <span style='color:#111;'>2.04KB</span>","children":null,"spread":false}],"spread":true},{"title":"layers","children":[{"title":"__init__.py <span style='color:#111;'>0B</span>","children":null,"spread":false},{"title":"pooling.py <span style='color:#111;'>3.27KB</span>","children":null,"spread":false},{"title":"core.py <span style='color:#111;'>3.10KB</span>","children":null,"spread":false}],"spread":true},{"title":"from_torch.py <span style='color:#111;'>2.73KB</span>","children":null,"spread":false},{"title":"objectives.py <span style='color:#111;'>1.01KB</span>","children":null,"spread":false},{"title":"__init__.py <span style='color:#111;'>621B</span>","children":null,"spread":false},{"title":"icnet","children":[{"title":"model.py <span style='color:#111;'>2.19KB</span>","children":null,"spread":false},{"title":"__init__.py <span style='color:#111;'>0B</span>","children":null,"spread":false},{"title":"encoder.py <span style='color:#111;'>9.24KB</span>","children":null,"spread":false},{"title":"decoder.py <span style='color:#111;'>1.58KB</span>","children":null,"spread":false}],"spread":true}],"spread":true},{"title":"test.py <span style='color:#111;'>5.11KB</span>","children":null,"spread":false},{"title":"evaluation","children":[{"title":"evalCOCO.py <span style='color:#111;'>1.81KB</span>","children":null,"spread":false},{"title":"__init__.py <span style='color:#111;'>15B</span>","children":null,"spread":false}],"spread":true},{"title":"run.py <span style='color:#111;'>1.84KB</span>","children":null,"spread":false},{"title":"__init__.py <span style='color:#111;'>15B</span>","children":null,"spread":false},{"title":"predict.py <span style='color:#111;'>6.25KB</span>","children":null,"spread":false},{"title":"data","children":[{"title":"utils.py <span style='color:#111;'>8.35KB</span>","children":null,"spread":false},{"title":"datasets.py <span style='color:#111;'>23.91KB</span>","children":null,"spread":false},{"title":"__init__.py <span style='color:#111;'>15B</span>","children":null,"spread":false},{"title":"coco_extract_labels.py <span style='color:#111;'>1.63KB</span>","children":null,"spread":false},{"title":"pycocotools","children":[{"title":"common","children":[{"title":"maskApi.h <span style='color:#111;'>2.13KB</span>","children":null,"spread":false},{"title":"maskApi.c <span style='color:#111;'>8.06KB</span>","children":null,"spread":false}],"spread":false},{"title":"mask.py <span style='color:#111;'>4.49KB</span>","children":null,"spread":false},{"title":"coco.py <span style='color:#111;'>17.87KB</span>","children":null,"spread":false},{"title":"__init__.py <span style='color:#111;'>0B</span>","children":null,"spread":false},{"title":"_mask.pyx <span style='color:#111;'>11.17KB</span>","children":null,"spread":false},{"title":"setup.py <span style='color:#111;'>724B</span>","children":null,"spread":false},{"title":"Makefile <span style='color:#111;'>199B</span>","children":null,"spread":false},{"title":"cocoeval.py <span style='color:#111;'>23.30KB</span>","children":null,"spread":false}],"spread":false},{"title":"data_loader.py <span style='color:#111;'>4.19KB</span>","children":null,"spread":false}],"spread":true}],"spread":true},{"title":"requirements.txt <span style='color:#111;'>346B</span>","children":null,"spread":false},{"title":"train.sh <span style='color:#111;'>153B</span>","children":null,"spread":false},{"title":"predict.sh <span style='color:#111;'>62B</span>","children":null,"spread":false},{"title":"config","children":[{"title":"solver.json.default <span style='color:#111;'>664B</span>","children":null,"spread":false},{"title":"evaluation.json.default <span style='color:#111;'>182B</span>","children":null,"spread":false},{"title":"README.md <span style='color:#111;'>477B</span>","children":null,"spread":false}],"spread":true},{"title":"LICENSE <span style='color:#111;'>1.04KB</span>","children":null,"spread":false},{"title":"environment.yml <span style='color:#111;'>726B</span>","children":null,"spread":false},{"title":"test.sh <span style='color:#111;'>126B</span>","children":null,"spread":false},{"title":"README.md <span style='color:#111;'>2.39KB</span>","children":null,"spread":false},{"title":"data","children":[{"title":"README.md <span style='color:#111;'>51B</span>","children":null,"spread":false}],"spread":true},{"title":".gitignore <span style='color:#111;'>1.22KB</span>","children":null,"spread":false},{"title":"setup.sh <span style='color:#111;'>221B</span>","children":null,"spread":false},{"title":"pretrained","children":[{"title":"README.md <span style='color:#111;'>244B</span>","children":null,"spread":false}],"spread":false},{"title":"overfit.sh <span style='color:#111;'>161B</span>","children":null,"spread":false}],"spread":false}],"spread":true}]

评论信息

免责申明

【好快吧下载】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【好快吧下载】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【好快吧下载】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,8686821#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明