首页 行业 教育     /    多阶段伪谱法的基本实现

多阶段伪谱法的基本实现

上传者: qq_41870755 | 上传时间:2025/3/29 17:11:34 | 文件大小:83KB | 文件类型:zip
多阶段伪谱法的基本实现
多阶段伪谱法的基本实现的matlab代码,便于学习和改造成自己的实现。
建立了伪谱法的通用框架,目前包含切比雪夫和勒让德伪谱法,可以很容易加入其它伪谱法,也可以进一步加入分段策略改造成hp自适应伪谱法。
包含一些算例,如速降线,月面着陆。
本软件ID:10472999

文件下载

资源详情

[{"title":"(67个子文件83KB)多阶段伪谱法的基本实现","children":[{"title":"msavename.m <span style='color:#111;'>80B</span>","children":null,"spread":false},{"title":"include","children":[{"title":".gitignore <span style='color:#111;'>16B</span>","children":null,"spread":false}],"spread":true},{"title":"License <span style='color:#111;'>1.48KB</span>","children":null,"spread":false},{"title":"INSTALL_Basic_Pseudospectral.m <span style='color:#111;'>7.62KB</span>","children":null,"spread":false},{"title":"src","children":[{"title":"PS_DefaultOpts.m <span style='color:#111;'>1.25KB</span>","children":null,"spread":false},{"title":"LagrangeInter.m <span style='color:#111;'>516B</span>","children":null,"spread":false},{"title":"lepoly.m <span style='color:#111;'>494B</span>","children":null,"spread":false},{"title":"PS_Nonlincon.m <span style='color:#111;'>2.70KB</span>","children":null,"spread":false},{"title":"LGL","children":[{"title":"LGL_Dmatrix.m <span style='color:#111;'>811B</span>","children":null,"spread":false},{"title":"LGL_weights.m <span style='color:#111;'>1.23KB</span>","children":null,"spread":false},{"title":"LGL_nodes.m <span style='color:#111;'>1.99KB</span>","children":null,"spread":false}],"spread":true},{"title":"PS_Scaling.m <span style='color:#111;'>1003B</span>","children":null,"spread":false},{"title":"PS_Fmatrix.m <span style='color:#111;'>900B</span>","children":null,"spread":false},{"title":"PS_Objective.m <span style='color:#111;'>1.66KB</span>","children":null,"spread":false},{"title":"CGL","children":[{"title":"CGL_weights.m <span style='color:#111;'>1.34KB</span>","children":null,"spread":false},{"title":"CGL_Dmatrix.m <span style='color:#111;'>1.18KB</span>","children":null,"spread":false},{"title":"CGL_nodes.m <span style='color:#111;'>1.04KB</span>","children":null,"spread":false}],"spread":true},{"title":"PS_Solve.m <span style='color:#111;'>3.85KB</span>","children":null,"spread":false}],"spread":true},{"title":"mfoldername.m <span style='color:#111;'>78B</span>","children":null,"spread":false},{"title":"examples","children":[{"title":"brachistochrone","children":[{"title":"Brach_bounds.m <span style='color:#111;'>1.05KB</span>","children":null,"spread":false},{"title":"Brach_initial.m <span style='color:#111;'>1.51KB</span>","children":null,"spread":false},{"title":"Brach_main.m <span style='color:#111;'>3.40KB</span>","children":null,"spread":false},{"title":"Brach_path.m <span style='color:#111;'>706B</span>","children":null,"spread":false},{"title":"Brach_boundary.m <span style='color:#111;'>934B</span>","children":null,"spread":false},{"title":"Brach_mayer.m <span style='color:#111;'>893B</span>","children":null,"spread":false},{"title":".gitignore <span style='color:#111;'>18B</span>","children":null,"spread":false},{"title":"Brach_plot.m <span style='color:#111;'>7.19KB</span>","children":null,"spread":false},{"title":"Brach_deriv.m <span style='color:#111;'>984B</span>","children":null,"spread":false},{"title":"Brach_solution.m <span style='color:#111;'>2.06KB</span>","children":null,"spread":false},{"title":"Brach_lagrange.m <span style='color:#111;'>929B</span>","children":null,"spread":false}],"spread":false},{"title":"moon-lander","children":[{"title":"ML_main.m <span style='color:#111;'>3.65KB</span>","children":null,"spread":false},{"title":"ML_initial.m <span style='color:#111;'>1.36KB</span>","children":null,"spread":false},{"title":"ML_path.m <span style='color:#111;'>693B</span>","children":null,"spread":false},{"title":"ML_plot","children":[{"title":"saved","children":[{"title":"pdf","children":null,"spread":false},{"title":"png","children":null,"spread":false}],"spread":true}],"spread":true},{"title":"ML_deriv.m <span style='color:#111;'>910B</span>","children":null,"spread":false},{"title":"ML_boundary.m <span style='color:#111;'>908B</span>","children":null,"spread":false},{"title":"ML_lagrange.m <span style='color:#111;'>919B</span>","children":null,"spread":false},{"title":"ML_bounds.m <span style='color:#111;'>1.03KB</span>","children":null,"spread":false},{"title":".gitignore <span style='color:#111;'>18B</span>","children":null,"spread":false},{"title":"ML_solution.m <span style='color:#111;'>2.54KB</span>","children":null,"spread":false},{"title":"ML_mayer.m <span style='color:#111;'>875B</span>","children":null,"spread":false},{"title":"ML_plot.m <span style='color:#111;'>6.01KB</span>","children":null,"spread":false}],"spread":false},{"title":"reentry","children":[{"title":"Brach_bounds.m <span style='color:#111;'>1.05KB</span>","children":null,"spread":false},{"title":"Brach_initial.m <span style='color:#111;'>1.51KB</span>","children":null,"spread":false},{"title":"Brach_main.m <span style='color:#111;'>3.42KB</span>","children":null,"spread":false},{"title":"Brach_path.m <span style='color:#111;'>706B</span>","children":null,"spread":false},{"title":"Brach_boundary.m <span style='color:#111;'>934B</span>","children":null,"spread":false},{"title":"Brach_mayer.m <span style='color:#111;'>893B</span>","children":null,"spread":false},{"title":"Brach_plot.m <span style='color:#111;'>7.19KB</span>","children":null,"spread":false},{"title":"Brach_deriv.m <span style='color:#111;'>984B</span>","children":null,"spread":false},{"title":"Brach_solution.m <span style='color:#111;'>2.06KB</span>","children":null,"spread":false},{"title":"Brach_lagrange.m <span style='color:#111;'>929B</span>","children":null,"spread":false}],"spread":true},{"title":".gitignore <span style='color:#111;'>21B</span>","children":null,"spread":false},{"title":"bryson-denham","children":[{"title":"BD_main.m <span style='color:#111;'>4.51KB</span>","children":null,"spread":false},{"title":"BD_deriv.m <span style='color:#111;'>900B</span>","children":null,"spread":false},{"title":"BD_mayer.m <span style='color:#111;'>880B</span>","children":null,"spread":false},{"title":"BD_plot","children":[{"title":"saved","children":null,"spread":false}],"spread":true},{"title":"BD_bounds.m <span style='color:#111;'>968B</span>","children":null,"spread":false},{"title":"BD_lagrange.m <span style='color:#111;'>927B</span>","children":null,"spread":false},{"title":"BD_initial.m <span style='color:#111;'>1.24KB</span>","children":null,"spread":false},{"title":"BD_path.m <span style='color:#111;'>832B</span>","children":null,"spread":false},{"title":"BD_solution.m <span style='color:#111;'>1.86KB</span>","children":null,"spread":false},{"title":".gitignore <span style='color:#111;'>18B</span>","children":null,"spread":false},{"title":"BD_boundary.m <span style='color:#111;'>912B</span>","children":null,"spread":false},{"title":"BD_plot.asv <span style='color:#111;'>6.79KB</span>","children":null,"spread":false},{"title":"BD_plot.m <span style='color:#111;'>6.76KB</span>","children":null,"spread":false}],"spread":false}],"spread":true},{"title":"README.md <span style='color:#111;'>4.04KB</span>","children":null,"spread":false},{"title":"optional","children":[{"title":".gitignore <span style='color:#111;'>21B</span>","children":null,"spread":false},{"title":"readme_image.svg <span style='color:#111;'>201.45KB</span>","children":null,"spread":false}],"spread":true}],"spread":true}]

评论信息

  • zshzh2015:
    还需要仔细看才能确定是否有用2019-02-28
  • zshzh2015:
    还需要仔细看才能确定是否有用2019-02-28
  • weixin_38658108:
    哈哈哈哈。真的好用啊2019-01-06
  • weixin_38658108:
    哈哈哈哈。真的好用啊2019-01-06

免责申明

【好快吧下载】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【好快吧下载】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【好快吧下载】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,8686821#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明