首页 课程资源 专业指导     /    基于哈希的图像检索(LSH,ITQ)matlab代码

基于哈希的图像检索(LSH,ITQ)matlab代码

上传者: lilai619 | 上传时间:2025/3/12 16:41:35 | 文件大小:1.3MB | 文件类型:rar
基于哈希的图像检索(LSH,ITQ)matlab代码
哈希图像检索,包括LSH以及ITQ两种算法。
之前帮网友做的,顺带分享一下。
本软件ID:9812840

文件下载

资源详情

[{"title":"(36个子文件1.3MB)基于哈希的图像检索(LSH,ITQ)matlab代码","children":[{"title":"myprojects","children":[{"title":"demo2_gist_visualization.m <span style='color:#111;'>1.33KB</span>","children":null,"spread":false},{"title":"使用说明.txt <span style='color:#111;'>81B</span>","children":null,"spread":false},{"title":"demo5_img_generation.m <span style='color:#111;'>2.79KB</span>","children":null,"spread":false},{"title":"demo7_ITQ_retrieval.m <span style='color:#111;'>2.55KB</span>","children":null,"spread":false},{"title":"datasets","children":[{"title":"old","children":[{"title":"cifar-10-batches-mat","children":null,"spread":false}],"spread":true},{"title":"new","children":null,"spread":false}],"spread":true},{"title":"tools","children":[{"title":"utils","children":[{"title":"recall_precision.m <span style='color:#111;'>2.36KB</span>","children":null,"spread":false},{"title":"simMat_sparse.m <span style='color:#111;'>166B</span>","children":null,"spread":false},{"title":"simMat.m <span style='color:#111;'>320B</span>","children":null,"spread":false},{"title":"eva_lookup.m <span style='color:#111;'>1.42KB</span>","children":null,"spread":false},{"title":"eva_lookup1.m <span style='color:#111;'>944B</span>","children":null,"spread":false},{"title":"hammingDist_sparse.m <span style='color:#111;'>1.01KB</span>","children":null,"spread":false},{"title":"hammingDist.m <span style='color:#111;'>1.47KB</span>","children":null,"spread":false},{"title":"distMat.m <span style='color:#111;'>474B</span>","children":null,"spread":false},{"title":"eva_ranking1.m <span style='color:#111;'>773B</span>","children":null,"spread":false},{"title":"eva_ranking.m <span style='color:#111;'>1.57KB</span>","children":null,"spread":false},{"title":"gendata.m <span style='color:#111;'>1.54KB</span>","children":null,"spread":false},{"title":"extractbit.m <span style='color:#111;'>224B</span>","children":null,"spread":false},{"title":"compactbit.m <span style='color:#111;'>293B</span>","children":null,"spread":false}],"spread":false},{"title":"gist","children":[{"title":"showGist.m <span style='color:#111;'>1.91KB</span>","children":null,"spread":false},{"title":"test2.jpg <span style='color:#111;'>239.28KB</span>","children":null,"spread":false},{"title":"LMgist.m <span style='color:#111;'>8.05KB</span>","children":null,"spread":false},{"title":"test1.jpg <span style='color:#111;'>30.64KB</span>","children":null,"spread":false},{"title":"imresizecrop.m <span style='color:#111;'>522B</span>","children":null,"spread":false},{"title":"test3.jpg <span style='color:#111;'>1004.42KB</span>","children":null,"spread":false}],"spread":true}],"spread":true},{"title":"demo3_gist_extraction.m <span style='color:#111;'>2.24KB</span>","children":null,"spread":false},{"title":"demo6_LSH_retrieval.m <span style='color:#111;'>2.86KB</span>","children":null,"spread":false},{"title":"使用说明.png <span style='color:#111;'>39.36KB</span>","children":null,"spread":false},{"title":"demo1_data_visualization.m <span style='color:#111;'>4.05KB</span>","children":null,"spread":false},{"title":"methods","children":[{"title":"LSH","children":[{"title":"compressLSH.m <span style='color:#111;'>304B</span>","children":null,"spread":false},{"title":"processRange.m <span style='color:#111;'>1.01KB</span>","children":null,"spread":false},{"title":"evaluate_LSH.m <span style='color:#111;'>2.40KB</span>","children":null,"spread":false},{"title":"lshfunc.m <span style='color:#111;'>3.20KB</span>","children":null,"spread":false}],"spread":true},{"title":"ITQ","children":[{"title":"compressITQ.m <span style='color:#111;'>638B</span>","children":null,"spread":false},{"title":"evaluate_ITQ.m <span style='color:#111;'>2.16KB</span>","children":null,"spread":false},{"title":"trainITQ.m <span style='color:#111;'>302B</span>","children":null,"spread":false},{"title":"ITQ.m <span style='color:#111;'>1.03KB</span>","children":null,"spread":false}],"spread":true}],"spread":true},{"title":"demo4_data_process.m <span style='color:#111;'>2.27KB</span>","children":null,"spread":false}],"spread":false}],"spread":true}]

评论信息

  • lepanle:
    按理来说应该能够检索到才对呀,cifar数据集包含了马、车、飞机这三类。2019-12-04
  • 湖底咸鱼:
    这是咋回事啊引用了不存在的字段'index'。出错demo5_img_generation(line73)idx_test=exp_data.index;2019-05-15
  • tibetkingon:
    有一定的参考价值。2018-07-10
  • Airy00:
    demo6和demo7出现维度错误是因为选择的查询图像在exp_data.index中不能被索引,简单来说就是在测试集中找不到你要查询的图像,换一张图像就好了2018-03-10
  • jiangYIer123:
    demo6出现:错误使用min矩阵维度必须一致。出错demo6_LSH_retrieval&amp;#40;line54&amp;#41;D=min(Dhamm,D);dem2018-03-08

免责申明

【好快吧下载】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【好快吧下载】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【好快吧下载】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,8686821#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明