[{"title":"(58个子文件9.39MB)遗传算法图像分割matlab+源代码","children":[{"title":"遗传算法图像分割matlab+源代码","children":[{"title":"遗传算法在图像处理中的应用.pdf <span style='color:#111;'>448.71KB</span>","children":null,"spread":false},{"title":"基于量子遗传算法的二维最大熵图像分割.pdf <span style='color:#111;'>290.40KB</span>","children":null,"spread":false},{"title":"基于免疫算法的图像阈值分割.pdf <span style='color:#111;'>327.98KB</span>","children":null,"spread":false},{"title":"采用遗传算法与最大模糊熵的双阈值图像分割.pdf <span style='color:#111;'>461.12KB</span>","children":null,"spread":false},{"title":"用matlab做边缘提取的代码","children":[{"title":"edgedetect_basedonWavelet.m <span style='color:#111;'>5.00KB</span>","children":null,"spread":false},{"title":"lena.JPG <span style='color:#111;'>34.83KB</span>","children":null,"spread":false}],"spread":true},{"title":"基于遗传算法的自适应最优阈值图像分割技术研究.pdf <span style='color:#111;'>258.74KB</span>","children":null,"spread":false},{"title":"图像阈值分割算法实用技术研究与比较.pdf <span style='color:#111;'>368.24KB</span>","children":null,"spread":false},{"title":"基于遗传算法的自适应聚类图像阈值分割方法.pdf <span style='color:#111;'>426.32KB</span>","children":null,"spread":false},{"title":"基于遗传算法的模糊熵多阈值图像分割.pdf <span style='color:#111;'>217.77KB</span>","children":null,"spread":false},{"title":"基于遗传算法的阈值图像分割研究(1).pdf <span style='color:#111;'>283.92KB</span>","children":null,"spread":false},{"title":"基于遗传算法的Otsu法在图像分割中的应用(1).pdf <span style='color:#111;'>1.39MB</span>","children":null,"spread":false},{"title":"基于改进遗传算法的图像分割.pdf <span style='color:#111;'>197.57KB</span>","children":null,"spread":false},{"title":"基于遗传算法的聚类分析在CT图像分割中的应用.pdf <span style='color:#111;'>599.69KB</span>","children":null,"spread":false},{"title":"很像!!基于改进遗传算法的图像分割方法.pdf <span style='color:#111;'>351.54KB</span>","children":null,"spread":false},{"title":"基于二维最大熵和改进的遗传算法的图像分割.pdf <span style='color:#111;'>431.39KB</span>","children":null,"spread":false},{"title":"图像分割新方法综述.pdf <span style='color:#111;'>248.39KB</span>","children":null,"spread":false},{"title":"基于MATLAB的遗传算法的源程序","children":[{"title":"GAOT","children":[{"title":"maxGenTerm.m <span style='color:#111;'>1.24KB</span>","children":null,"spread":false},{"title":"coranaEval.m <span style='color:#111;'>1.42KB</span>","children":null,"spread":false},{"title":"gademo2.m <span style='color:#111;'>2.75KB</span>","children":null,"spread":false},{"title":"multiNonUnifMutation.m <span style='color:#111;'>1.94KB</span>","children":null,"spread":false},{"title":"coranaMin.m <span style='color:#111;'>1.19KB</span>","children":null,"spread":false},{"title":"Contents.m <span style='color:#111;'>2.95KB</span>","children":null,"spread":false},{"title":"optMaxGenTerm.m <span style='color:#111;'>1.39KB</span>","children":null,"spread":false},{"title":"gaot.ps <span style='color:#111;'>130.49KB</span>","children":null,"spread":false},{"title":"tournSelect.m <span style='color:#111;'>1.58KB</span>","children":null,"spread":false},{"title":"unifMutation.m <span style='color:#111;'>1.61KB</span>","children":null,"spread":false},{"title":"roulette.m <span style='color:#111;'>1.74KB</span>","children":null,"spread":false},{"title":"gademo1eval1.m <span style='color:#111;'>1.24KB</span>","children":null,"spread":false},{"title":"gaot.dvi <span style='color:#111;'>56.43KB</span>","children":null,"spread":false},{"title":"heuristicXover.m <span style='color:#111;'>2.09KB</span>","children":null,"spread":false},{"title":"simpleXover.m <span style='color:#111;'>1.58KB</span>","children":null,"spread":false},{"title":"normGeomSelect.m <span style='color:#111;'>2.26KB</span>","children":null,"spread":false},{"title":"nonUnifMutation.m <span style='color:#111;'>2.14KB</span>","children":null,"spread":false},{"title":"b2f.m <span style='color:#111;'>1.46KB</span>","children":null,"spread":false},{"title":"arithXover.m <span style='color:#111;'>1.46KB</span>","children":null,"spread":false},{"title":"initialize.m <span style='color:#111;'>3.12KB</span>","children":null,"spread":false},{"title":"f2b.m <span style='color:#111;'>1.46KB</span>","children":null,"spread":false},{"title":"README <span style='color:#111;'>803B</span>","children":null,"spread":false},{"title":"gaotindex.html <span style='color:#111;'>3.24KB</span>","children":null,"spread":false},{"title":"gademo1.m <span style='color:#111;'>4.72KB</span>","children":null,"spread":false},{"title":"parse.m <span style='color:#111;'>1.42KB</span>","children":null,"spread":false},{"title":"index.html <span style='color:#111;'>2.54KB</span>","children":null,"spread":false},{"title":"delta.m <span style='color:#111;'>1.44KB</span>","children":null,"spread":false},{"title":"ga.m <span style='color:#111;'>10.47KB</span>","children":null,"spread":false},{"title":"gademo3.m <span style='color:#111;'>6.11KB</span>","children":null,"spread":false},{"title":"boundaryMutation.m <span style='color:#111;'>1.60KB</span>","children":null,"spread":false},{"title":"calcbits.m <span style='color:#111;'>1.35KB</span>","children":null,"spread":false},{"title":"binaryMutation.m <span style='color:#111;'>1.47KB</span>","children":null,"spread":false}],"spread":false}],"spread":false},{"title":"基于遗传量子的自适应图像分割算法.pdf <span style='color:#111;'>204.69KB</span>","children":null,"spread":false},{"title":"基于遗传算法的Otsu法在图像分割中的应用.pdf <span style='color:#111;'>1.39MB</span>","children":null,"spread":false},{"title":"遗传算法的最佳熵在图像分割中的应用.pdf <span style='color:#111;'>253.57KB</span>","children":null,"spread":false},{"title":"基于混沌遗传算法的图像阈值分割.pdf <span style='color:#111;'>296.74KB</span>","children":null,"spread":false},{"title":"一种自适应的多目标图像分割方法.pdf <span style='color:#111;'>358.64KB</span>","children":null,"spread":false},{"title":"用遗传_神经网络方法进行图像分割的研究.pdf <span style='color:#111;'>292.61KB</span>","children":null,"spread":false},{"title":"基于遗传算法的阈值图像分割研究.pdf <span style='color:#111;'>283.92KB</span>","children":null,"spread":false},{"title":"一种基于量子遗传算法的红外图像分割方法.pdf <span style='color:#111;'>324.19KB</span>","children":null,"spread":false},{"title":"基于遗传算法的二维最小交叉熵的动态图像分割.pdf <span style='color:#111;'>618.05KB</span>","children":null,"spread":false}],"spread":false}],"spread":true}]