[{"title":"(71个子文件17.31MB)SIFT特征最经典的paper中文和英文总结","children":[{"title":"sift+pca-sift","children":[{"title":"sift代码2","children":[{"title":"siftread.m <span style='color:#111;'>3.49KB</span>","children":null,"spread":false},{"title":"siftormx.c <span style='color:#111;'>7.96KB</span>","children":null,"spread":false},{"title":"sift_demo4.m <span style='color:#111;'>1.38KB</span>","children":null,"spread":false},{"title":"diffss.m <span style='color:#111;'>2.73KB</span>","children":null,"spread":false},{"title":"tightsubplot.m <span style='color:#111;'>5.02KB</span>","children":null,"spread":false},{"title":"siftdescriptor.m <span style='color:#111;'>3.70KB</span>","children":null,"spread":false},{"title":"gaussianss.m <span style='color:#111;'>7.73KB</span>","children":null,"spread":false},{"title":"siftmatch.c <span style='color:#111;'>10.18KB</span>","children":null,"spread":false},{"title":"siftdescriptor.c <span style='color:#111;'>16.05KB</span>","children":null,"spread":false},{"title":"imreadbw.m <span style='color:#111;'>2.30KB</span>","children":null,"spread":false},{"title":"imsmooth.c <span style='color:#111;'>3.87KB</span>","children":null,"spread":false},{"title":"LICENSE <span style='color:#111;'>1.94KB</span>","children":null,"spread":false},{"title":"sift_demo3.m <span style='color:#111;'>1.70KB</span>","children":null,"spread":false},{"title":"bundle.m <span style='color:#111;'>0B</span>","children":null,"spread":false},{"title":"sift_demo2.m <span style='color:#111;'>4.20KB</span>","children":null,"spread":false},{"title":"plotsiftframe.m <span style='color:#111;'>4.92KB</span>","children":null,"spread":false},{"title":"sift_demo5.m <span style='color:#111;'>387B</span>","children":null,"spread":false},{"title":"siftlocalmax.c <span style='color:#111;'>8.58KB</span>","children":null,"spread":false},{"title":"sift_overview.m <span style='color:#111;'>1.16KB</span>","children":null,"spread":false},{"title":"plotmatches.m <span style='color:#111;'>9.77KB</span>","children":null,"spread":false},{"title":"TIMESTAMP <span style='color:#111;'>219B</span>","children":null,"spread":false},{"title":"README <span style='color:#111;'>1.92KB</span>","children":null,"spread":false},{"title":"plotsiftdescriptor.m <span style='color:#111;'>5.34KB</span>","children":null,"spread":false},{"title":"doc","children":[{"title":"sift.tex <span style='color:#111;'>21.30KB</span>","children":null,"spread":false},{"title":"bibliography.bib <span style='color:#111;'>246B</span>","children":null,"spread":false},{"title":"visionlab.sty <span style='color:#111;'>6.03KB</span>","children":null,"spread":false},{"title":"figures","children":[{"title":"sift-descriptor.aux <span style='color:#111;'>8B</span>","children":null,"spread":false},{"title":"sift-descriptor.log <span style='color:#111;'>13.12KB</span>","children":null,"spread":false},{"title":"warmread.sty <span style='color:#111;'>47.42KB</span>","children":null,"spread":false},{"title":"sift-descriptor.wrm <span style='color:#111;'>13B</span>","children":null,"spread":false},{"title":"sift-descriptor.pdf <span style='color:#111;'>433.48KB</span>","children":null,"spread":false},{"title":"sift-descriptor-AI.bb <span style='color:#111;'>550B</span>","children":null,"spread":false},{"title":"sift-descriptor.tex <span style='color:#111;'>3.20KB</span>","children":null,"spread":false},{"title":"sift-descriptor-AI.pdf <span style='color:#111;'>464.76KB</span>","children":null,"spread":false},{"title":"sift-descriptor-SAVED.tex <span style='color:#111;'>3.20KB</span>","children":null,"spread":false}],"spread":false}],"spread":false},{"title":"siftrefinemx.m <span style='color:#111;'>3.04KB</span>","children":null,"spread":false},{"title":"siftrefinemx.c <span style='color:#111;'>8.79KB</span>","children":null,"spread":false},{"title":"data","children":[{"title":"circle.sift <span style='color:#111;'>1.33KB</span>","children":null,"spread":false},{"title":"landscape-b.jpg <span style='color:#111;'>297.58KB</span>","children":null,"spread":false},{"title":"img5.jpg <span style='color:#111;'>456.84KB</span>","children":null,"spread":false},{"title":"circle.pgm <span style='color:#111;'>9.82KB</span>","children":null,"spread":false},{"title":"Thumbs.db <span style='color:#111;'>26.00KB</span>","children":null,"spread":false},{"title":"box.pgm <span style='color:#111;'>70.62KB</span>","children":null,"spread":false},{"title":"nest.png <span style='color:#111;'>10.84KB</span>","children":null,"spread":false},{"title":"landscape-a.jpg <span style='color:#111;'>268.66KB</span>","children":null,"spread":false},{"title":"box.sift <span style='color:#111;'>227.59KB</span>","children":null,"spread":false},{"title":"img3.jpg <span style='color:#111;'>454.06KB</span>","children":null,"spread":false},{"title":"nest2.bmp <span style='color:#111;'>17.05KB</span>","children":null,"spread":false}],"spread":false},{"title":"Makefile <span style='color:#111;'>2.33KB</span>","children":null,"spread":false},{"title":"sift_gendoc.css <span style='color:#111;'>2.50KB</span>","children":null,"spread":false},{"title":"sift.m <span style='color:#111;'>10.03KB</span>","children":null,"spread":false},{"title":"plotss.m <span style='color:#111;'>2.67KB</span>","children":null,"spread":false},{"title":"siftlocalmax.m <span style='color:#111;'>1.60KB</span>","children":null,"spread":false},{"title":"sift_compile.m <span style='color:#111;'>1.64KB</span>","children":null,"spread":false},{"title":"sift_demo.m <span style='color:#111;'>3.35KB</span>","children":null,"spread":false},{"title":"mexutils.c <span style='color:#111;'>2.13KB</span>","children":null,"spread":false},{"title":"siftmatch.m <span style='color:#111;'>2.86KB</span>","children":null,"spread":false}],"spread":false},{"title":"pca-sift","children":[{"title":"PCA-SIFT.doc <span style='color:#111;'>61.50KB</span>","children":null,"spread":false},{"title":"19引用1PCA-SIFT.pdf <span style='color:#111;'>616.91KB</span>","children":null,"spread":false},{"title":"pca.doc <span style='color:#111;'>30.00KB</span>","children":null,"spread":false},{"title":"19引用1PCA-SIFT.doc <span style='color:#111;'>26.00KB</span>","children":null,"spread":false}],"spread":true},{"title":"siftpaper","children":[{"title":"SIFT特征匹配算法研究.pdf <span style='color:#111;'>608.05KB</span>","children":null,"spread":false},{"title":"19EfficientNear-duplicateDuplicateDetectionandSub-ImageRetrieval.pdf <span style='color:#111;'>578.28KB</span>","children":null,"spread":false},{"title":"1ScaleandAffineInvariantInterestPointDetectors.pdf <span style='color:#111;'>1.51MB</span>","children":null,"spread":false},{"title":"基于图像特征点的提取匹配及应用.kdh <span style='color:#111;'>3.21MB</span>","children":null,"spread":false},{"title":"3DistinctiveImageFeaturesfromScale-InvariantKeypoints.pdf <span style='color:#111;'>788.84KB</span>","children":null,"spread":false},{"title":"sift讲义.pdf <span style='color:#111;'>1.97MB</span>","children":null,"spread":false},{"title":"Localgrayvalueinvariantsforimageretrieval.pdf <span style='color:#111;'>1.31MB</span>","children":null,"spread":false},{"title":"2EvaluationofInterestPointDetectors.pdf <span style='color:#111;'>954.86KB</span>","children":null,"spread":false},{"title":"sift讲义.doc <span style='color:#111;'>20.50KB</span>","children":null,"spread":false},{"title":"FeatureDetectionwithAutomaticScaleSelection.pdf <span style='color:#111;'>4.69MB</span>","children":null,"spread":false}],"spread":true}],"spread":true}],"spread":true}]