首页 开发技术 其它     /    SIFT特征最经典的paper中文和英文总结

SIFT特征最经典的paper中文和英文总结

上传者: babahealth | 上传时间: | 文件大小:17.31MB | 文件类型:rar
SIFT特征最经典的paper中文和英文总结
其中包含了最为经典的文章,在会议论文集中的文章,和中文的相关文章,还有对SIFT特征的总结和概括,对于初步了解的人是最首要的选择,包括一些PCA-SIFT的文章,matlab代码 本软件ID:590595

文件下载

资源详情

[{"title":"(71个子文件17.31MB)SIFT特征最经典的paper中文和英文总结","children":[{"title":"sift+pca-sift","children":[{"title":"sift代码2","children":[{"title":"siftread.m <span style='color:#111;'>3.49KB</span>","children":null,"spread":false},{"title":"siftormx.c <span style='color:#111;'>7.96KB</span>","children":null,"spread":false},{"title":"sift_demo4.m <span style='color:#111;'>1.38KB</span>","children":null,"spread":false},{"title":"diffss.m <span style='color:#111;'>2.73KB</span>","children":null,"spread":false},{"title":"tightsubplot.m <span style='color:#111;'>5.02KB</span>","children":null,"spread":false},{"title":"siftdescriptor.m <span style='color:#111;'>3.70KB</span>","children":null,"spread":false},{"title":"gaussianss.m <span style='color:#111;'>7.73KB</span>","children":null,"spread":false},{"title":"siftmatch.c <span style='color:#111;'>10.18KB</span>","children":null,"spread":false},{"title":"siftdescriptor.c <span style='color:#111;'>16.05KB</span>","children":null,"spread":false},{"title":"imreadbw.m <span style='color:#111;'>2.30KB</span>","children":null,"spread":false},{"title":"imsmooth.c <span style='color:#111;'>3.87KB</span>","children":null,"spread":false},{"title":"LICENSE <span style='color:#111;'>1.94KB</span>","children":null,"spread":false},{"title":"sift_demo3.m <span style='color:#111;'>1.70KB</span>","children":null,"spread":false},{"title":"bundle.m <span style='color:#111;'>0B</span>","children":null,"spread":false},{"title":"sift_demo2.m <span style='color:#111;'>4.20KB</span>","children":null,"spread":false},{"title":"plotsiftframe.m <span style='color:#111;'>4.92KB</span>","children":null,"spread":false},{"title":"sift_demo5.m <span style='color:#111;'>387B</span>","children":null,"spread":false},{"title":"siftlocalmax.c <span style='color:#111;'>8.58KB</span>","children":null,"spread":false},{"title":"sift_overview.m <span style='color:#111;'>1.16KB</span>","children":null,"spread":false},{"title":"plotmatches.m <span style='color:#111;'>9.77KB</span>","children":null,"spread":false},{"title":"TIMESTAMP <span style='color:#111;'>219B</span>","children":null,"spread":false},{"title":"README <span style='color:#111;'>1.92KB</span>","children":null,"spread":false},{"title":"plotsiftdescriptor.m <span style='color:#111;'>5.34KB</span>","children":null,"spread":false},{"title":"doc","children":[{"title":"sift.tex <span style='color:#111;'>21.30KB</span>","children":null,"spread":false},{"title":"bibliography.bib <span style='color:#111;'>246B</span>","children":null,"spread":false},{"title":"visionlab.sty <span style='color:#111;'>6.03KB</span>","children":null,"spread":false},{"title":"figures","children":[{"title":"sift-descriptor.aux <span style='color:#111;'>8B</span>","children":null,"spread":false},{"title":"sift-descriptor.log <span style='color:#111;'>13.12KB</span>","children":null,"spread":false},{"title":"warmread.sty <span style='color:#111;'>47.42KB</span>","children":null,"spread":false},{"title":"sift-descriptor.wrm <span style='color:#111;'>13B</span>","children":null,"spread":false},{"title":"sift-descriptor.pdf <span style='color:#111;'>433.48KB</span>","children":null,"spread":false},{"title":"sift-descriptor-AI.bb <span style='color:#111;'>550B</span>","children":null,"spread":false},{"title":"sift-descriptor.tex <span style='color:#111;'>3.20KB</span>","children":null,"spread":false},{"title":"sift-descriptor-AI.pdf <span style='color:#111;'>464.76KB</span>","children":null,"spread":false},{"title":"sift-descriptor-SAVED.tex <span style='color:#111;'>3.20KB</span>","children":null,"spread":false}],"spread":false}],"spread":false},{"title":"siftrefinemx.m <span style='color:#111;'>3.04KB</span>","children":null,"spread":false},{"title":"siftrefinemx.c <span style='color:#111;'>8.79KB</span>","children":null,"spread":false},{"title":"data","children":[{"title":"circle.sift <span style='color:#111;'>1.33KB</span>","children":null,"spread":false},{"title":"landscape-b.jpg <span style='color:#111;'>297.58KB</span>","children":null,"spread":false},{"title":"img5.jpg <span style='color:#111;'>456.84KB</span>","children":null,"spread":false},{"title":"circle.pgm <span style='color:#111;'>9.82KB</span>","children":null,"spread":false},{"title":"Thumbs.db <span style='color:#111;'>26.00KB</span>","children":null,"spread":false},{"title":"box.pgm <span style='color:#111;'>70.62KB</span>","children":null,"spread":false},{"title":"nest.png <span style='color:#111;'>10.84KB</span>","children":null,"spread":false},{"title":"landscape-a.jpg <span style='color:#111;'>268.66KB</span>","children":null,"spread":false},{"title":"box.sift <span style='color:#111;'>227.59KB</span>","children":null,"spread":false},{"title":"img3.jpg <span style='color:#111;'>454.06KB</span>","children":null,"spread":false},{"title":"nest2.bmp <span style='color:#111;'>17.05KB</span>","children":null,"spread":false}],"spread":false},{"title":"Makefile <span style='color:#111;'>2.33KB</span>","children":null,"spread":false},{"title":"sift_gendoc.css <span style='color:#111;'>2.50KB</span>","children":null,"spread":false},{"title":"sift.m <span style='color:#111;'>10.03KB</span>","children":null,"spread":false},{"title":"plotss.m <span style='color:#111;'>2.67KB</span>","children":null,"spread":false},{"title":"siftlocalmax.m <span style='color:#111;'>1.60KB</span>","children":null,"spread":false},{"title":"sift_compile.m <span style='color:#111;'>1.64KB</span>","children":null,"spread":false},{"title":"sift_demo.m <span style='color:#111;'>3.35KB</span>","children":null,"spread":false},{"title":"mexutils.c <span style='color:#111;'>2.13KB</span>","children":null,"spread":false},{"title":"siftmatch.m <span style='color:#111;'>2.86KB</span>","children":null,"spread":false}],"spread":false},{"title":"pca-sift","children":[{"title":"PCA-SIFT.doc <span style='color:#111;'>61.50KB</span>","children":null,"spread":false},{"title":"19引用1PCA-SIFT.pdf <span style='color:#111;'>616.91KB</span>","children":null,"spread":false},{"title":"pca.doc <span style='color:#111;'>30.00KB</span>","children":null,"spread":false},{"title":"19引用1PCA-SIFT.doc <span style='color:#111;'>26.00KB</span>","children":null,"spread":false}],"spread":true},{"title":"siftpaper","children":[{"title":"SIFT特征匹配算法研究.pdf <span style='color:#111;'>608.05KB</span>","children":null,"spread":false},{"title":"19EfficientNear-duplicateDuplicateDetectionandSub-ImageRetrieval.pdf <span style='color:#111;'>578.28KB</span>","children":null,"spread":false},{"title":"1ScaleandAffineInvariantInterestPointDetectors.pdf <span style='color:#111;'>1.51MB</span>","children":null,"spread":false},{"title":"基于图像特征点的提取匹配及应用.kdh <span style='color:#111;'>3.21MB</span>","children":null,"spread":false},{"title":"3DistinctiveImageFeaturesfromScale-InvariantKeypoints.pdf <span style='color:#111;'>788.84KB</span>","children":null,"spread":false},{"title":"sift讲义.pdf <span style='color:#111;'>1.97MB</span>","children":null,"spread":false},{"title":"Localgrayvalueinvariantsforimageretrieval.pdf <span style='color:#111;'>1.31MB</span>","children":null,"spread":false},{"title":"2EvaluationofInterestPointDetectors.pdf <span style='color:#111;'>954.86KB</span>","children":null,"spread":false},{"title":"sift讲义.doc <span style='color:#111;'>20.50KB</span>","children":null,"spread":false},{"title":"FeatureDetectionwithAutomaticScaleSelection.pdf <span style='color:#111;'>4.69MB</span>","children":null,"spread":false}],"spread":true}],"spread":true}],"spread":true}]

评论信息

  • LINC任:
    很好的收集资料,正在做毕设,初期学习很需要~2018-03-30
  • mountwzl:
    东西比较全,虽然有些我原来下过,不过你算是给了一个整理!2013-11-16
  • chenastraea:
    谢谢,包含的论文很全面,学习了。2013-10-15
  • c14876660:
    包含的论文不错2013-03-05
  • jlhua666:
    资料内容挺丰富的,paper不错,就是代码运行不通,还望楼主指点,能上传修改后的代码。谢谢!2011-11-29

免责申明

【好快吧下载】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【好快吧下载】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【好快吧下载】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,8686821#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明