深度学习FasterR-CNN的多帧背景还原解决动态背景的问题。
针对动态背景下的目标提取问题。
本文提出了基于深度学习FasterR-CNN的多帧背景还原的前景目标提取算法。
基于FasterR-CNN对前景目标的单帧提取能力,对每一帧分别进行检测,并提取每帧的背景,经过图像融合还原出完整的不含目标的背景图像,并通过滤波与膨胀腐蚀等精确的提取前景目标。
2024/6/1 6:06:55 1KB fasterRCNN 目标提取 动态背景
1
云安全威胁深度分析.pdf
2024/5/26 17:54:01 992KB 云安全
1
很多涉及图上操作的算法都是以图的遍历操作为基础的。
试写一个程序,演示无向图的遍历操作。
以邻接表为存储结构,实现连通无向图的深度优先和广度优先遍历。
以用户指定的结点为起点,分别输出每种遍历下的结点访问序列和相应生成树的边集。
[测试数据]由学生依据软件工程的测试技术自己确定。
注意测试边界数据,如单个结点。
[实现提示]设图的结点不超过30个,每个结点用一个编号表示(如果一个图有n个结点,则它们的编号分别为1,2,…,n)。
通过输入图的全部边输入一个图,每个边为一个数对,可以对边的输入顺序作出某种限制。
注意,生成树的边是有向边,端点顺序不能颠倒。
2024/5/26 13:25:36 120KB BFS DFS
1
本文在VS2012开发平台上面配置PCL1.7.2+KinectV2.0SDK+opencv2.4.9,使用最新的KinectV2.0传感器设备获取场景中的深度图像和彩色图像,并将二者转换保存为PCL数据库所使用的PCD点云数据格式,然后借助编程算法,编写程序将保存的点云PCD格式数据,成功的保存到电脑Dist里面。
本程序所使用的配件较多,自己起步一点点摸索的话,极费事、极费时间,这里将其拿出来供大家直接使用,也算是为致力于三维点云图像处理和PCL+KinectV2.0的同仁志士加了点催化剂,给予一点帮助吧。
让三维点云的获取更加方便,KinectV2.0使用范围更广阔吧。
2024/5/26 13:49:48 25.53MB 点云,PCD
1
本次实验训练了多个用于垃圾图片分类识别的模型,采用迁移学习的方法选取性能较好的模型进行调优改进,最终的模型识别准确率在93%以上(30个epoch);
然后将训练好的模型部署在华为云上,生成API接口进行调用;
最后设计了一个可视化程序调用API接口来进行展示,方便用户使用。
2024/5/26 13:35:28 711KB 垃圾分类 深度学习 Pytorch
1
收到一些国内外朋友的来信,咨询关于容积卡尔曼滤波的问题(CKF),大家比较疑惑的应该就是generator或G-orbit的概念。
考虑到工作以后,重心必然转移,不可能再像现在这样详细的回答所有人的问题,更不可能再帮大家改论文、写(或改)代码了,请各位谅解!在此,上传一个CKF和五阶CKF用于目标跟踪的示例代码,代码中包含详细的注释,希望对大家以后的学习和研究有所帮助!此代码利用C++对五阶CKF的第二G-轨迹进行了封装(Perms.exe),能理解最好,如果无法理解,也无须深究其具体构造方法!可执行文件底层是用字符串+递归算法实现的,理论上可以应用于任意维模型。
但考虑到递归算法可能存在的栈溢出,重复压栈出栈带来的时间消耗等问题,我们利用矩阵的稀疏性和群的完全对称性,并通过分次调用,来尽可能减少栈的深度,提高计算速度。
容积点一次生成后,可以一直使用,通过对50维G-轨迹的生成速度(CoreT6600@2.2GHz)进行测试,包含数据读写在内的速度约为1.5秒,速度尚可。
而目前为止,本人尚未遇到达到甚至超过50维的系统,因此,暂时不作算法层面的优化。
注意:Perms.exe可以用于任意维模型,将可执行文件复制至工作目录下,调用时选择N/n,并输入你的模型维数,即可生成所需的第二G-轨迹。
如果无法理解相关的概念,请参考示例代码,并记住如何使用即可~~~相关理论基础及所用模型,请参考以下文献:References(youmayciteoneofthearticlesinyourpaper):[1]X.C.Zhang,C.J.Guo,"CubatureKalmanfilters:Derivationandextension,"ChinsesPhysicsB,vol.22,no.12,128401,DOI:10.1088/1674-1056/22/12/128401[2]X.C.Zhang,Y.L.Teng,"AnewderivationofthecubatureKalmanfilters,"AsianJournalofControl,DOI:10.1002/asjc.926[3]X.C.Zhang,"Cubatureinformationfiltersusinghigh-degreeandembeddedcubaturerules,"Circuits,Systems,andSignalProcessing,vol.33,no.6,pp.1799-1818,DOI:10.1007/s00034-013-9730-0
2024/5/26 2:39:13 239KB CKF 五阶CKF 目标跟踪
1
1.写了一个自己的腐蚀算法。
2.通过图论的连通分量的判断来去除噪点(深度优先搜索)3.水平和垂直切割。
自己写的根据直线的粗细来切割线段
2024/5/25 21:34:55 3.7MB 黑白图像去噪
1
深度学习的使用手册,包括Ubuntu,CUDA,NVIDIA等。
2024/5/24 13:34:14 2.49MB 11111
1
分享课程——深度学习-对抗生成网络实战(GAN);
对抗生成网络实战系列主要包括三大核心内容:1.经典GAN论文解读;
2.源码复现解读;
3.项目实战应用。
全程实战解读各大经典GAN模型构建与应用方法,通俗讲解论文中核心知识点与整体网络模型架构,从数据预处理与环境配置开始详细解读项目源码及其应用方法。
提供课程所需全部数据,代码,PPT。
第1章对抗生成网络架构原理与实战解析第2章基于CycleGan开源项目实战图像合成第3章stargan论文架构解析第4章stargan项目实战及其源码解读。




第9章基础补充-PyTorch卷积模型实例
2024/5/23 10:45:56 773B 人工智能 深度学习
1
吴恩达深度学习作业代码,包括全部作业代码Python实现,是官方的代码答案,包括所有的作业代码和讲解。
1
共 1000 条记录 首页 上一页 下一页 尾页
在日常工作中,钉钉打卡成了我生活中不可或缺的一部分。然而,有时候这个看似简单的任务却给我带来了不少烦恼。 每天早晚,我总是得牢记打开钉钉应用,点击"工作台",再找到"考勤打卡"进行签到。有时候因为工作忙碌,会忘记打卡,导致考勤异常,影响当月的工作评价。而且,由于我使用的是苹果手机,有时候系统更新后,钉钉的某些功能会出现异常,使得打卡变得更加麻烦。 另外,我的家人使用的是安卓手机,他们也经常抱怨钉钉打卡的繁琐。尤其是对于那些不太熟悉手机操作的长辈来说,每次打卡都是一次挑战。他们总是担心自己会操作失误,导致打卡失败。 为了解决这些烦恼,我开始思考是否可以通过编写一个全自动化脚本来实现钉钉打卡。经过一段时间的摸索和学习,我终于成功编写出了一个适用于苹果和安卓系统的钉钉打卡脚本。
2024-04-09 15:03 15KB 钉钉 钉钉打卡