1、实验目的通过动态优先权算法的模拟加深对进程概念和进程调度过程的理解。
2、实验内容(1)用C语言来实现对N个进程采用动态优先算法的进程调度;
(2)每个用来标识进程的进程控制块 PCB用结构来描述,包括以下字段:进程标识符id进程优先数priority,并规定优先数越大的进程,其优先权越高;
进程已占用的CPU时间cputime ;
进程还需占用的CPU时间alltime,当进程运行完毕时,alltime变为0;
进程的阻塞时间startblock,表示当进程再运行startblock个时间片后,进程将进入阻塞状态;
进程被阻塞的时间blocktime,表示已阻塞的进程再等待blocktime个时间片后,将转换成就绪态进程状态state;
队列指针next,用来将PCB排成队列(3)优先数改变的原则:进程在就绪队列中呆一个时间片,优先数增加1进程每运行一个时间片,优先数减3。
(4)假设在调度前,系统中有5个进程,它们的初始状态如下:ID 0 1 2 3 4PRIORITY 9 38 30 29 0CPUTIME 0 0 0 0 0ALLTIME 3 3 6 3 4STARTBLOCK 2 -1 -1 -1 -1BLOCKTIME 3 0 0 0 0STATE READY READY READY READY READY(5)为了清楚地观察诸进程的调度过程,程序应将每个时间片内的进程的情况显示出来,参照的具体格式如下:
2024/7/31 19:39:55 103KB 动态优先 进程调度 VC++
1
5.5.实现剪切板进程间通讯
218.28MB qt c++
1
驱动层Hook系统内核调用的,拦截对进程的操作.驱动编程的绝好样例.zip
2024/7/30 10:06:09 262KB 驱动开发 驱动
1
第1篇游戏和外挂初识篇第1章认识游戏和外挂1.1游戏安全现状1.2什么是外挂1.3内存挂与游戏的关系1.4游戏的3个核心概念1.4.1游戏资源的加/解密1.4.2游戏协议之发包模型1.4.3游戏内存对象布局1.5外挂的设计思路1.6反外挂的思路1.7本章小结第2篇外挂技术篇第2章五花八门的注入技术2.1注册表注入2.2远线程注入2.3依赖可信进程注入2.4APC注入2.5消息钩子注入2.6导入表注入2.7劫持进程创建注入2.8LSP劫持注入2.8.1编写LSP2.8.2安装LSP2.9输入法注入2.10ComRes注入第3章浅谈无模块化3.1LDR_MODULE隐藏3.2抹去PE“指纹”3.3本章小结第4章安全的交互通道4.1消息钩子4.2替代游戏消息处理过程4.3GetKeyState、GetAsyncKeyState和GetKeyBoardState4.4进程间通信4.5本章小结第5章未授权的Call5.1CallStack检测5.2隐藏Call5.2.1Call自定义函数头5.2.2构建假栈帧5.3定位Call5.3.1虚函数差异调用定位Call5.3.2send()函数回溯定位Call5.4本章小结第6章Hook大全6.1Hook技术简介6.2IATHook在全屏加速中的应用6.3巧妙的虚表Hook6.3.1虚表的内存布局6.3.2C++中的RTTI6.3.3Hook虚表6.4DetoursHook6.4.1Detours简介6.4.2DetoursHook的3个关键概念6.4.3DetoursHook的核心接口6.4.4DetoursHook引擎6.5高级Hook6.5.1S.E.H简介6.5.2V.E.H简介6.5.3硬件断点6.5.4S.E.HHook6.5.5V.E.HHook6.5.6检测V.E.HHook6.6本章小结第7章应用层防护7.1静态保护7.2动态保护7.2.1反dump7.2.2内存访问异常Hook7.3本章小结第3篇游戏保护方案探索篇第8章探索游戏保护方案8.1分析工具介绍8.1.1GameSpider8.1.2KernelDetective8.2定位保护模块8.2.1定位ring0保护模块8.2.2定位ring3保护模块8.2.3定位自加载模块8.3分析保护方案8.3.1ring3保护方案8.3.2ring0保护方案8.4本章小结第4篇射击游戏安全专题第9章射击游戏安全9.1自动开枪9.1.1易语言简介9.1.2易语言版自动开枪外挂9.2反后坐力9.2.1平衡Y轴法9.2.2AutoIt脚本法9.3DirectXHack9.3.1DirectX简介9.3.2用Direct3D绘制图形9.3.3D3D9的Hack点9.3.4D3D9Hook9.4本章小结第5篇外挂检测技术篇第10章外挂的检测方法10.1代码篡改检测10.2未授权调用检测10.3数据篡改检测10.3.1吸怪挂分析10.3.2线程转移和消息分流10.4本章小结附录A声明附录B中国计算机安全相关法律及规定
2024/7/29 21:32:26 181.87MB 游戏攻防
1
processsExplorer工具能够对windows系统资源进行实时监控,对系统中运行的进程进行管理。
2024/7/29 12:49:53 1.16MB 扫描测试工具
1
获取电脑进程列表,显示各个进程的CPU,内存,上行速度,下载速度。
以及通过pid杀死进程的方法。
使用winpcap库抓取各个进程的网络速率。
2024/7/28 18:51:35 13.43MB 进程 CPU 内存 上行速度
1
C#写的TCP服务器端程序,支持多个TCP客户端连入,程序当中有一个监听进程不断监听来自客户端的TCP连接请求,请求建立后交由一个专门的处理进程来处理接收到的数据(在本程序当中只是简单的将收到的数据返回给客户端)。
全部源代码。
1
Linux下编写一个内核模块,分别线性遍历所有进程和DFS遍历进程树
2024/7/26 21:37:23 1KB Linux 线性遍历 DFS 进程树
1
(1)创建生产者和消费者线程在Windows2000环境下,创建一个控制台进程,在此进程中创建n个线程来模拟生产者或者消费者。
这些线程的信息由本程序定义的“测试用例文件”中予以指定。
该文件的格式和含义如下:31P32P43C414P25C3124第一行说明程序中设置几个临界区,其余每行分别描述了一个生产者或者消费者线程的信息。
每一行的各字段间用Tab键隔开。
不管是消费者还是生产者,都有一个对应的线程号,即每一行开始字段那个整数。
第二个字段用字母P或者C区分是生产者还是消费者。
第三个字段表示在进入相应线程后,在进行生产和消费动作前的休眠时间,以秒计时;
这样做的目的是可以通过调整这一列参数,控制开始进行生产和消费动作的时间。
如果是代表生产者,则该行只有三个字段。
如果代表消费者,则该行后边还有若干字段,代表要求消费的产品所对应的生产者的线程号。
所以务必确认这些对应的线程号存在并且该线程代表一个生产者。
(2)生产和消费的规则在按照上述要求创建线程进行相应的读写操作时,还需要符合以下要求:①共享缓冲区存在空闲空间时,生产者即可使用共享缓冲区。
②从上边的测试数据文件例子可以看出,某一生产者生产一个产品后,可能不止一个消费者,或者一个消费者多次地请求消费该产品。
此时,只有当所有的消费需求都被满足以后,该产品所在的共享缓冲区才可以被释放,并作为空闲空间允许新的生产者使用。
③每个消费者线程的各个消费需求之间存在先后顺序。
例如上述测试用例文件包含一行信息“5C3l24”,可知这代表一个消费者线程,该线程请求消费1,2,4号生产者线程生产的产品。
而这种消费是有严格顺序的,消费1号线程产品的请求得到满足后才能继续往下请求2号生产者线程的产品。
④要求在每个线程发出读写操作申请、开始读写操作和结束读写操作时分别显示提示信息。
(3)相关基础知识本实验所使用的生产者和消费者模型具有如下特点:本实验的多个缓冲区不是环形循环的,也不要求按顺序访问。
生产者可以把产品放到目前某一个空缓冲区中。
消费者只消费指定生产者的产品。
在测试用例文件中指定了所有的生产和消费的需求,只有当共享缓冲区的数据满足了所有关于它的消费需求后,此共享缓冲区才可以作为空闲空间允许新的生产者使用。
本实验在为生产者分配缓冲区时各生产者间必须互斥,此后各个生产者的具体生产活动可以并发。
而消费者之间只有在对同一产品进行消费时才需要互斥,同时它们在消费过程结束时需要判断该消费对象是否已经消费完毕并清除该产品。
Windows用来实现同步和互斥的实体。
在Windows中,常见的同步对象有:信号量(Semaphore)、互斥量(Mutex)、临界段(CriticalSection)等。
使用这些对象都分为三个步骤,一是创建或者初始化:接着请求该同步对象,随即进入临界区,这一步对应于互斥量的上锁;
最后释放该同步对象,这对应于互斥量的解锁。
这些同步对象在一个线程中创建,在其他线程中都可以使用,从而实现同步互斥。
2024/7/25 19:35:19 1.63MB 多线程同步生产者和消费者问题
1
可获得系统的进程名,启动路径,cpu使用率,内存占用,线程数,用户名等信息,写的比较粗糙,有兴趣的可以自己改造一下
1
共 1000 条记录 首页 上一页 下一页 尾页
在日常工作中,钉钉打卡成了我生活中不可或缺的一部分。然而,有时候这个看似简单的任务却给我带来了不少烦恼。 每天早晚,我总是得牢记打开钉钉应用,点击"工作台",再找到"考勤打卡"进行签到。有时候因为工作忙碌,会忘记打卡,导致考勤异常,影响当月的工作评价。而且,由于我使用的是苹果手机,有时候系统更新后,钉钉的某些功能会出现异常,使得打卡变得更加麻烦。 另外,我的家人使用的是安卓手机,他们也经常抱怨钉钉打卡的繁琐。尤其是对于那些不太熟悉手机操作的长辈来说,每次打卡都是一次挑战。他们总是担心自己会操作失误,导致打卡失败。 为了解决这些烦恼,我开始思考是否可以通过编写一个全自动化脚本来实现钉钉打卡。经过一段时间的摸索和学习,我终于成功编写出了一个适用于苹果和安卓系统的钉钉打卡脚本。
2024-04-09 15:03 15KB 钉钉 钉钉打卡